L1 LICENCE DE MATHÉMATIQUES GÉOMÉTRIE ANALYTIQUE Feuille de TD n°2

Aires des triangles dans le plan euclidien

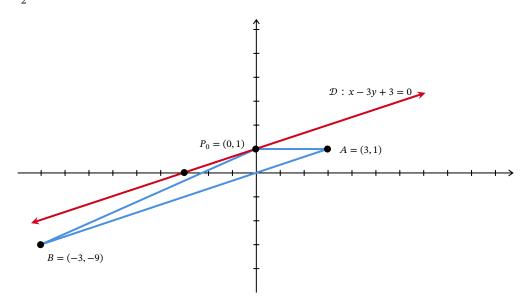
Exercice 1.

On considère la droite \mathcal{D} définie par \mathcal{D} : x-3y+3=0. ainsi que les points A et B ayant les coordonnées $x_A=3,y_A=1$ et $x_B=-9,y_B=-3$.

- (1.1) Faire un dessin et calculer l'aire du triangle $[ABP_0]$ pour $P_0 = (0, 1)$.
- (1.2) Déterminer le nombre de points P appartenant à la droite \mathcal{D} tels que l'aire du triangle [ABP] soit égale à 6.

Correction.

(1) On peut calculer l'aire du triangle $[ABP_0]$ où bien en utilisant le déterminant où bien la formule usuelle " $\frac{1}{2}$ (base × hauteur)". On choisit le déterminant:



$$\sigma[ABP_0] = \frac{1}{2} \left| \det \begin{bmatrix} 3 & -12 \\ 0 & -4 \end{bmatrix} \right| = \frac{1}{2}(12) = 6$$

(2) On commence par donner une paramétrisation de la droite \mathcal{D} :

$$\mathcal{D}: \begin{cases} x = 3t \\ y = t + 1 \end{cases}, \quad t \in \mathbf{R}$$

Soit P le point de \mathcal{D} avec coordonnées (3t, t+1) pour un certain nombre réel t. On remplace P_0 par P dans 1 et on obtient:

$$\sigma[ABP] = \frac{1}{2} \left| \det \begin{bmatrix} 3 - 3t & -12 \\ -t & -4 \end{bmatrix} \right| = \frac{1}{2} \left| (-4(3 - 3t) - (-12)(-t)) \right|$$
$$= \frac{1}{2} \left| -12 + 12t - 12t \right|$$
$$= 6.$$

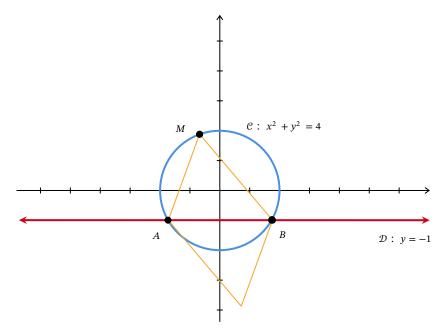
Alors, pour tout point $P \in \mathcal{D}$, l'aire du triangle [ABP] est constante et égal à 6 (notons que ceci est du au fait que la droite passant par A et B et la droite \mathcal{D} sont parallèles donc l'hauteur du triangle [ABP] est constante).

Exercice 2.

On considère la droite \mathcal{D} : y=1 et le cercle C de centre O et de rayon 2. La droite \mathcal{D} coupe le cercle C en deux points $A=(-\sqrt{3},-1)$ et $B=(\sqrt{3},-1)$. Pour combien de points M appartenant au cercle C l'aire du triangle [ABM] vaut-elle $\sqrt{3}$?

Correction.

Soit M=(a,b) un point du cercle $\mathcal C$ tel que l'aire du triangle $[ABM]=\sqrt{3}$:



Alors

$$\sqrt{3} = \frac{1}{2} \left| \det(\overrightarrow{MA}, \overrightarrow{MB}) \right| = \frac{1}{2} \left| \det \begin{bmatrix} a + \sqrt{3} & \sqrt{3} - a \\ b + 1 & -1 - b \end{bmatrix} \right|
= \frac{1}{2} \left| (a + \sqrt{3})(-1 - b) - (\sqrt{3} - a)(b + 1) \right|
= \frac{1}{2} \left| -a - \sqrt{3} - ab - b\sqrt{3} - b\sqrt{3} - \sqrt{3} + ab + a \right|
= \frac{1}{2} \left| -2b\sqrt{3} - 2\sqrt{3} \right|
= \sqrt{3} |b - 1|$$

On obtient que |b-1|=1 et de cette manière b=0 ou b=2. En plus comme $M\in\mathcal{C}$ les coordonnes de M satisfont:

$$a^2 + b^2 = 4$$

Alors, si b=0 on obtient $a=\pm 2$ et si b=2 alors a=0. Ainsi, les points M du cercle tel que l'aire du triangle [ABM] est égal à $\sqrt{3}$ sont (0,2), (2,0) et (-2,0).

Exercice 3.

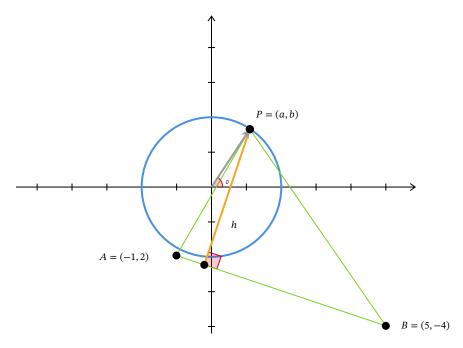
Soit \mathcal{C} le cercle de rayon 2 centré en $\mathcal{O}=(0,0)$ et soient les points A=(-1,-2) et B=(5,-4). Déterminer le triangle [ABP] d'aire maximale quand le point P parcourt le cercle \mathcal{C} .

Correction.

Soit P = (a, b) un point du cercle \mathcal{C} . En utilisant des coordonnés polaires le point P peut s'écrire comme

$$P = (2\cos(\theta), 2\sin(\theta))$$

où $\theta \in [0, 2\pi[$. Alors, la hauteur h issue de P à la droite (AB) correspond à la distance de P à la droite (AB). Il est facile a noter qu'une équation cartésienne pour la droite (AB) est x - y - 1 = 0.



La hauteur h est alors

$$h = d(P, (AB)) = |a + b - 1| = |2\cos(\theta) + 2\sin(\theta) - 1|.$$

Exercice 4.

Soient deux triangles non aplatis [PAB] et [QAB] tels que le coté [AB] soit commun et que (PQ) et (AB) s'intersectent. On note M le point d'intersection de (PQ) et (AB). Après avoir fait un dessin:

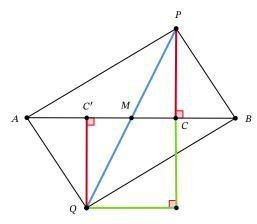
- (4.1) Montrer que $\frac{\sigma(PAB)}{\sigma(QAB)} = \frac{MP}{MQ}$.
- (4.2) Peut-on avoir $\sigma(PAB) = \sigma(QAB)$?

Correction.

(1) On commence par noter que les aires de deux triangles sont donnés par (voir figure) :

$$\sigma(PAB) = \frac{1}{2}AB \cdot PC$$

$$\sigma(QAB) = \frac{1}{2}AB \cdot QC'$$



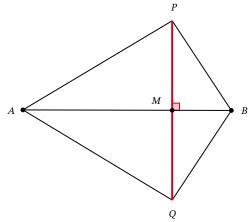
Alors

$$\frac{\sigma(PAB)}{\sigma(QAB)} = \frac{PC}{QC'}$$

Par le Théorème de Thalès on a que

$$\frac{PQ}{PM} = \frac{PC + QC'}{PC} \Leftrightarrow \frac{PM + QM}{PM} = \frac{PC + QC'}{PC}$$
$$\Leftrightarrow 1 + \frac{QM}{PM} = 1 + \frac{QC'}{PC}$$
$$\Leftrightarrow \frac{QM}{PM} = \frac{QC'}{PC}$$
$$\Leftrightarrow \frac{PM}{QM} = \frac{PC}{QC'} = \frac{\sigma(PAB)}{\sigma(QAB)}$$

(2) Par le exercice précédente on peut observer que les deux aires $\sigma(PAB)$ et $\sigma(QAB)$ sont égaux si la raison entre les distances PQ et QM est égal à 1. Dans ce cas on se retrouve dans une configuration de la forme :



Droites et cercles

Exercice 5.

Soit \mathcal{C} le cercle $x^2 + y^2 = 4$.

- (5.1) Déterminer les tangentes à \mathcal{C} parallèles à la droite \mathcal{D} d'équation x 2y = 6.
- (5.2) Déterminer les tangentes à \mathcal{C} passant par le point d'intersection de \mathcal{D} et de \mathcal{L} : x + y = -6.

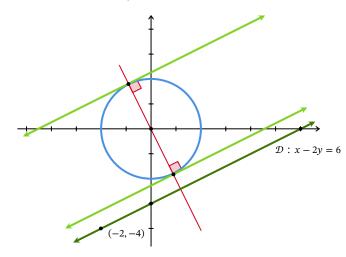
Correction.

(1) On considere le faisceau des droites parallèles à \mathcal{D} :

$$\mathcal{L}_c$$
: $x - 2y + c = 0$ où $c \in \mathbb{R}$.

Pour trouver des tangentes à $\mathcal C$ parallèles à la droite $\mathcal D$ il suffit d'étudier la position relative d'une droite $\mathcal L_c$ par rapport au cercle $\mathcal C$, autrement dit, on étudie le système :

(5.1)
$$\begin{cases} x - 2y + c = 0 \\ x^2 + y^2 = 4 \end{cases}$$



En remplaçant x = 2y - c dans l'équation du cercle, on arrive à une équation de degré deux :

$$5y^2 - 4c \cdot y + (c^2 - 4) = 0$$

Il s'ensuit que le système 5.1 admet une unique solution (c'est à dire les courbes se coupent en un unique point) si et seulement si le discriminant Δ de l'équation précédente est nul. On obtient:

$$\Delta = -4\left(c^2 - 20\right) = 0 \Leftrightarrow c = \pm 2\sqrt{5}$$

Donc, les droites tangentes au cercle et appartenant au faisceau $\{\mathcal{L}_c \mid c \in \mathbb{R}\}$ sont

$$\mathcal{L}_{2\sqrt{5}}$$
: $x - 2y + 2\sqrt{5} = 0$ et $\mathcal{L}_{-2\sqrt{5}}$: $x - 2y - 2\sqrt{5} = 0$.

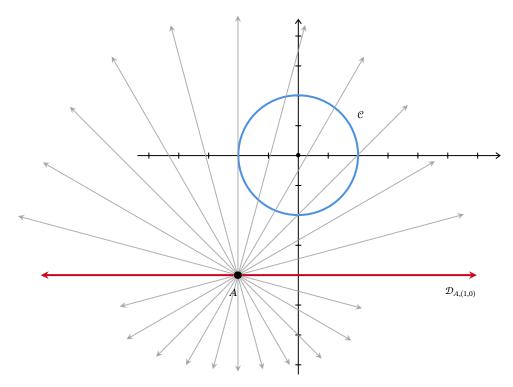
(2) Le point d'intersection de \mathcal{D} et \mathcal{L} est le point A de coordonnées A=(-2,-4).

Rappel 1 (Faisceau des droites). *Le faisceau des droites passant par un point A est l'ensemble des droites*

$$\left\{ \left. \mathcal{D}_{A, \overrightarrow{v}} \, \right| \, \overrightarrow{v} \in \mathbb{R}^2, \overrightarrow{v} \neq (0, 0) \right\}$$

où $\mathcal{D}_{A,\vec{v}}$ est la droite passant par A et de vecteur directeur \vec{v} . Notez que dans l'égalité ci-dessus, chaque droite apparaît un nombre infini de fois (Pourquoi?).

En inspectant le dessin ci-dessous,



on voit que la droite horizontale du faisceau, $\mathcal{D}_{A,(1,0)}$ ne coupe pas le cercle. Alors dans l'étude du problème de tangence on peut simplement considérer des droites sous la forme $\mathcal{D}_{A,(m,1)}$ avec $m \in \mathbb{R}$

(on aurait également pu dire $\mathcal{D}_{A,(a,b)}$ avec $b \neq 0$). La représentation paramétrique de $\mathcal{D}_{A,(m,1)}$ est alors donné par

$$\mathcal{D}_{A,(m,1)}:\begin{cases} x=-2+mt\\ y=-4+t \end{cases}, \quad \text{où } t\in\mathbb{R}$$

En remplacant les expressions pour x et y dans l'équation de \mathcal{C} , on obtient

$$(-2 + mt)^2 + (-4 + t)^2 = 4$$

c'est qui nous donne :

$$(m^2 + 1)t^2 + (-8 - 4m)t + 16 = 0$$

La droite $\mathcal{D}_{A,(m,1)}$ est tangente à \mathcal{C} si et seulement si l'équation précédente admet une unique solution en t. Alors, on cherche les valeurs de m pour lesquels le discriminant en nul :

$$\Delta = -16(3m^2 - 4m) = 0 \Leftrightarrow m = 0 \text{ où } m = \frac{4}{3}$$

On en déduit que les tangentes au cercle passant par A sont de la forme :

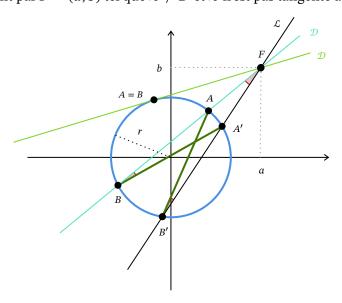
$$\mathcal{D}_{A,(0,1)}$$
: $x + 2 = 0$ et $\mathcal{D}_{A,(4/3,1)}$: $3x - 4y - 10 = 0$.

Exercice 6.

Soit \mathcal{C} le cercle de rayon r > 0 centré en $\mathcal{O} = (0,0)$ et soit F = (a,b) un point tel que $a^2 + b^2 > r^2$. Si \mathcal{D} est une droite passant par F et qui rencontre le cercle en A et B (non nécessairement distincts), montrer que le produit $FA \cdot FB$ est indépendant de la droite \mathcal{D} . Ce nombre s'appelle la puissance du point F par rapport au cercle \mathcal{C} et est noté $\rho_{\mathcal{C}}(A)$.

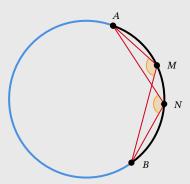
Correction.

Soit \mathcal{L} une droite passant par F = (a, b) tel que $\mathcal{L} \neq \mathcal{D}$ et \mathcal{L} n'est pas tangente au cercle \mathcal{C} .



On notera par A, B, A' et B' les points d'intersection de \mathcal{D} et \mathcal{L} avec le cercle \mathcal{C} respectivement (voir la figure précédente). Notez que les triangles [FBA'] et [FB'A] on un angle en commun ($\angle BFA' = \angle B'FA$). De plus les angles $\angle FBA'$ et $\angle FB'A$ sont égaux par le Théorème de l'angle inscrit.

Rappel 2 (Théorème de l'angle inscrit). *Deux angles inscrits dans un cercle et interceptant le même arc sont de même mesure.*



On en déduit que les triangles [FBA'] et [FB'A] son semblables (car ils ont deux angles égaux) et alors

$$\frac{FB}{FA'} = \frac{FB'}{FA} \Leftrightarrow FA \cdot FB = FA' \cdot FB'$$

On peut alors considérer le cas où \mathcal{L} est une droite passant par F et l'origine $\mathcal{O}=(0,0)$. Dans ce cas

$$FB' = d(\mathcal{O}, F) + r = \sqrt{a^2 + b^2} + r$$

$$FA' = d(\mathcal{O}, F) - r = \sqrt{a^2 + b^2} - r$$

Enfin,

$$FA' \cdot FB' = a^2 + b^2 - r^2$$

Par conséquent, le nombre $\rho_{\mathcal{C}}(F) = FA \cdot FB = FA' \cdot FB'$ ne dépend pas de \mathcal{D} . Il dépend des coordonnes du point F et le rayon r du cercle \mathcal{C} . On laisse comme exercice le cas où la droite \mathcal{D} est tangent au cercle \mathcal{C} .

Exercice 7.

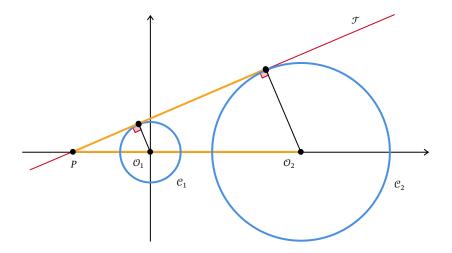
Soient \mathcal{C}_1 le cercle de rayon 1 centré en $\mathcal{O}_1=(0,0)$ et \mathcal{C}_2 le cercle de rayon 3 centré en $\mathcal{O}_2=(5,0)$. Soit \mathcal{T} une tangente commune aux deux cercles ; on suppose que \mathcal{O}_1 et \mathcal{O}_2 se trouvent dans un même demi-plan déterminé par \mathcal{T} .

- (7.1) Faire un dessin.
- (7.2) Remarquer que les droites $(\mathcal{O}_1\mathcal{O}_2)$ et \mathcal{T} font apparaître deux triangles semblables. Déterminer leur point d'intersection en appliquant le théorème de Thalès.
- (7.3) Déterminer une équation pour \mathcal{T} .

Correction.

(1) D'apres la description de l'exercice on a que

$$C_1$$
: $x^2 + y^2 = 1$
 C_2 : $(x - 5)^2 + y^2 = 9$



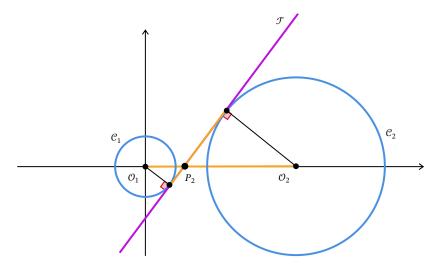
(2) Soit P le point d'intersection de $(\mathcal{O}_1\mathcal{O}_2)$ et \mathcal{T} et A,B les points d'intersection de \mathcal{T} et les droites perpendiculaires à \mathcal{T} passant par \mathcal{O}_1 et \mathcal{O}_2 respectivement. Notons que les droites (\mathcal{O}_1A) et \mathcal{O}_2B sont alors parallèles (elles sont perpendiculaires à la droite \mathcal{T}). On en déduit que les triangles $[PA\mathcal{O}_1]$ et $[PB\mathcal{O}_2]$ sont semblables. Par le Théorème de Thalès

$$\frac{P\mathcal{O}_2}{P\mathcal{O}_1} = \frac{B\mathcal{O}_2}{A\mathcal{O}_1} \Leftrightarrow \frac{P\mathcal{O}_2}{P\mathcal{O}_1} = \frac{3}{1}$$

Par conséquent $P\mathcal{O}_1 = \frac{1}{3}P\mathcal{O}_2$. Si on écrit en coordonnés P = (p,0) alors

$$|p| = \frac{|p-5|}{3} \Leftrightarrow p^2 = \frac{(p-5)^2}{9}$$
$$\Leftrightarrow 9p^2 = p^2 - 10p + 25$$
$$\Leftrightarrow 8p^2 + 10p - 25 = 0$$
$$\Leftrightarrow p = \frac{-5}{2} \text{ où } p = \frac{5}{4}$$

Le cas $p = \frac{5}{4}$ correspond au point P_2 où la droite tangente est comme dans la figure ci-dessous :



Par conséquent il y a deux possibles points d'intersection $P_1 = \left(\frac{-5}{2}, 0\right)$ et $P_2 = \left(\frac{5}{4}, 0\right)$.

(3) Rappelons que le faisceau des droites passant par $P = \left(\frac{-5}{2}, 0\right)$ est :

$$\left\{ \mathcal{D}_{P, \overrightarrow{v}} \,\middle|\, \overrightarrow{v} \in \mathbb{R}^2, \overrightarrow{v} \neq (0, 0) \right\}$$

De plus, on voit que la droite verticale $\mathcal{D}_{P,(0,1)}$ ne coupe pas les cercles \mathcal{C}_1 et \mathcal{C}_2 . Il s'ensuit que dans l'étude de la tangence on peut considérer seulement les droites $\mathcal{D}_{P,(1,\alpha)}$ avec $\alpha \in \mathbb{R}$:

$$\mathcal{D}_{P,(1,\alpha)}: \begin{cases} x = -\frac{5}{2} + t \\ y = \alpha t \end{cases}$$

En remplaçant dans les équations de \mathcal{C}_1 et \mathcal{C}_2 on obtient :

$$\left(-\frac{5}{2} + t_0\right)^2 + (\alpha t_0)^2 = 1$$
$$\left(-\frac{5}{2} + t_1 - 5\right)^2 + (\alpha t_1)^2 = 9$$

En simplifiant on obtient:

$$\frac{25}{4} - 5t_0 + t_0^2 + \alpha^2 t_0^2 = 1$$

$$t_1^2 - 15t_1 - \frac{225}{4} + \alpha^2 t_1^2 = 9$$

On cherche alors α tel que

$$25 - 4\left(\alpha^2 + 1\right) \left(\frac{21}{4}\right) = 0, \text{ et}$$
$$225 - 4(\alpha^2 + 1) \left(\frac{189}{4}\right) = 0$$

On obtient $\alpha = \frac{2}{\sqrt{21}}$ et $\alpha = -\frac{2}{\sqrt{21}}$.