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Abstract

A recent article by Kass and Wickelgren [9] provides a generalization of a classical theorem
in algebraic geometry regarding the fact that the number of lines on a smooth projective cu-
bic surface is always 27. Such generalization is mainly based on the study of Euler numbers
in A1-homotopy theory. This article is one of many interesting examples where Motivic ho-
motopy theory plays an important role in algebraic geometry. We will present a review of the
techniques used in the mentioned article to achieve such generalization.



Introduction

Motivic homotopy theory was developed by Morel and Voevodsky in the ’90s as a way to trans-
port tools from algebraic topology to algebraic geometry [15]. Roughly speaking they were able 
to develop and use techniques from algebraic topology in order to do homotopy theory over 
schemes. The theory itself contains a substantial amount of advanced techniques in category 
theory, algebraic geometry and algebraic topology only for its construction, but the applica-
tions are surprising. Just to mention one, in 1997 Voevodsky presented a proof of Milnor’s

conjecture using motivic cohomology [18].

In recent years many mathematicians have focused on looking for more applications of Mo-
tivic homotopy theory, and they have been able to prove theorems and provide generaliza-
tions for different classical theorems by interpreting the classical notions in this new context. 
In this work we will review a particular application made by Kass and Wickelgren regarding 
the count of lines on smooth cubic surfaces; here is important to remark that in the 19th cen-

tury, Salmon and Cayley shown that the count of lines for smooth cubic surfaces over C is 
always 27. There is a similar result when the surfaces are considered over R proved by Okonek

and Teleman [16] and also by Finashin and Kharlamov [5], however unlike the classical result 
of Salmon and Cayley, there the lines are classified either as hyperbolic or elliptic and they

proved that a signed count of these is always equal to 3.

Kass and Wickelgren generalized this result of Okonek and Teleman to case where the smooth 
cubic is considered over any field, the techniques used by them copy in somehow those of 
Okonek and Teleman for the real case. The main strategy of both groups of authors is to use 
the notion of Euler number for algebraic vector bundles. A detailed description of the meth-
ods and a modern proof of the classical theorem is contained in section 1.1. In the rest of 
the document we will focus on the general aspects to achieve the generalization and we will
provide proofs for the fundamental aspects. This work is mainly based on [9] and [10] and for 
technical aspects we will refer to them. Our main goal is to provide the global idea behind the 
generalization and highlight the importance of the tools used as they have begun to open new 
ways to answer classic questions in algebraic and enumerative geometry.
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Chapter 1

Arithmetic counts of lines

1.1 Motivation

We start by recalling that a cubic surface X over the complex numbersC is classically defined
as the zero set of a cubic polynomial f ∈C[x , y , z ], that is,

X = {(x , y , z ) ∈C3 : f (x , y , z ) = 0}

In modern language, X correspond to an affine scheme over C and we say X is smooth if is
well approximated by affine spaces near each point, namely, for each point of p of X the ring
OX ,p is a regular ring.
For affine varieties over an algebraically closed field, the last notion is equivalent to that the
rank of the Jacobian matrix of the polynomials defining X equals the codimension of X . Recall
that by compactification, X can be seen as a subscheme of P3 determined by a homogeneous
polynomial of degree 3 inC[x , y , z , w ]. In 1849, Salmon and Cayley proved the following result
regarding the number of lines in a smooth cubic surface:

Theorem 1.1. Let X be a smooth projective cubic surface over C. Then X contains exactly 27
lines.

Proofs of this celebrated theorem can be found in [8] or a more modern proof in [4]. In 2017,
Kass and Wickelgren proved a generalization of this classical theorem using elementary the-
ory of Euler numbers in A1− homotopy theory for algebraic vector bundles. In this section
we will review the modern proof from [4] of the classical theorem and the next sections will be
dedicated to study the generalization made by Kass and Wickelgren. We start with an example:

Proposition 1.2. Consider the Fermat cubic X in P3, defined as the projective zero set of the
polynomial

f (x , y , z , w ) = x 3+ y 3+ z 3+w 3.

Then X contains exactly 27 lines.
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Proof. Recall that in this context a line is just a 1-dimensional projective linear subspace ofP3.
Notice that a up to a permutation of coordinates, every line in P3 is given by linear equations
of the form:

x = a z + b w

y = c z +d w

for certain a , b , c , d ∈C. Such a line is in X if and only if

(a z + b w )3+ (c z +d w )3+ z 3+w 3 = 0

By comparing the coefficients in the expansion of the last equation, equivalently we get:

a 3+ c 3 =−1 (1-1)

b 3+d 3 =−1 (1-2)

a 2b =−c 2d (1-3)

a b 2 =−c d 2 (1-4)

If a , b , c , d are different from zero, the square of the third expression divided by the fourth
gives a 3 = −c 3 which contradicts (1-3). Hence for a line to lie in X at least one of the coeffi-
cients a , b , c , d must be zero. After a possible renumbering of the coordinates we may assume
a = 0. In this case we get that c 3 =−1 and d = 0, and b 3 =−1. For such values the above equa-
tions all hold and therefore this in fact determine a line in the cubic.
In this way we obtain nine lines in X by setting c = −ω j and b = −ωk where j , k = 0, 1, 2
and ω is a primitive third root of unity. By allowing permutations of the coordinates we get
(42)
2 ∗3 ∗3= 27 lines on X :

x +wωk = y + zω j = 0

x + zωk =w + yω j = 0

x + yωk =w + zω j = 0

where j , k = 0, 1, 2.

Now we will study a modern proof of Theorem 1.1 based on [4]. Before doing that we will
review some of the theory about Euler classes in vector bundles, This notion will allow us to
count the zeros of a section in a given vector bundle. We will use some facts about orientations
in vector bundles which we will study later for the proof of the generalization of Theorem 1.1
made by Kass and Wickelgren.

Let E −→ M be a rank r oriented (relatively oriented resp.) vector bundle on a (real resp.)
complex manifold M and σ be a section with only isolated zeros, this means that for every
p ∈M withσ(p ) = 0, there is an open neighborhood U of p such that the only zero ofσ in U
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is p .
Consider the degree of a map between oriented topological spheres Sd −→ Sd . The degree
only depends on the homotopy class of the map (see [13], pag 28), namely we have a map:

d e g : [Sd ,Sd ]−→Z

Now, let p be a zero ofσ. By hypothesis p is isolated, thus there are local coordinates around p
and a local trivialization of E (compatible with the relative orientation) such that the sectionσ
can be identified with a function Cn −→ Cn which we will denote also by σ

(resp. σ : Rn −→ Rn ). Such coordinates can be chosen in a such a way that p corresponds
to the origin and then there is a ball B sufficiently small around the origin such that p is the
only zero ofσ in B . By usingσ and B we obtain a function between oriented spheres:

σ̂ : ∂ B −→ ∂ {x ∈Cn : ||x ||= 1}

given by σ̂(x ) = σ(x )
||σ(x )|| . We then define the local degree ofσ at p to be

degp σ= deg(σ̂)

where the expression on the right is the classical usual degree in algebraic topology. We then
define the Euler number of E , denoted by e (E ) by means of:

e (E ) =
∑

p : σ(p )=0

degp σ.

The Poincaré-Hopf theorem shows that the Euler number of E is independent of the choice
ofσ. Now we will review the proof of the Salmon-Cayley theorem.

Proof. Let Gr(1, 3) be the Grassmannian parametrizing 2-dimensional subspaces W of a
4-dimensional vector space C4, or equivalently lines in P3. Denote the tautological bundle
of Gr(1, 3) by S −→Gr(1, 3) whose fiber over a subspace W is W itself and recall that the third
symmetric power of the dual of S, denoted by Sym3(S∗), is also a vector bundle over Gr(1, 3) and
its fiber over the point corresponding to W is the space of cubic homogenous polynomials on
W , namely Sym3(W ∗). Since X is defined by a cubic homogeneous polynomial on the whole
4 dimensional vector space C4, f determines an element of each fiber by restriction. That is,
we can define a sectionσ f of Sym3(S∗) by setting:

σ f (W ) = f |W .

It can be proved that a line P(W ) is contained in X when f vanishes on W or in other words,
there is a bijection between the zeros of the sectionσ f and the lines in X . We will see later that
every zero L ofσ f is isolated and the local degree degLσ f is equal to 1. As a consequence the
Euler number of Sym3(S∗)gives a count of the lines in the cubic smooth surface X . In particular
this number is independent of the surface (because does not depend on the section σ f ) and
therefore Proposition 1.2 completes the proof.
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Similar techniques have been used to prove the last result in the case where the surface is
defined over R, however in this case the count does not give 27 lines, instead, one can define
the type of a line and classify them as hyperbolic and elliptic lines. The problem here is that
the number of lines depends on the surface but a certain signed count does not. This assertion
was proved by Okonek and Teleman in [16] and also by Finashin-Kharlamov in [5].The result
is as follows:

Theorem 1.3. Let X be a smooth cubic surface over R. If h denotes the number of hyperbolic
lines in X and e the number of elliptic lines. Then h − e = 3.

Motivated by the techniques used to prove theorems 1.1 and 1.3, Kass and Wickelgren ob-
served a general principle and proved a generalization over any arbitrary field k . To this end,
the authors used theA1-homotopy theory developed by Morel and Voevodsky [15] and in par-
ticular the definition made by Morel of the degree homomorphism:

deg : [Pn/Pn−1,Pn/Pn−1]−→GW(k ).

Here the expression on the right is the Grothendieck-Witt group of bilinear forms over a field.
The definition of this degree homomorphism, sometimes called local degree inA1-homotopy
theory requires a very good understanding of Morel-Voevodsky’s theory, however the calcu-
lations made in [9] are performed in an elementary way and without direct reference to A1-
homotopy theory. We will study the general idea behind the proof and for technical aspects
we will refer to [9]. Furthermore, we will assume some results regarding theA1-degree in order
to focus on the generalization of Salmon-Cayley’s theorem and not on the general aspects of
this immense but fascinating theory.

1.2 Basic definitions and properties

We start by setting some notation and recalling some definitions and properties about Grass-
mannians that we used before. Given a k -vector space A, the Grassmannian Gr(A, r ) is defined
as the set of all r -dimensional subspaces of A. We recall that if B ⊆ A is a r -dimensional linear
subspace of A spanned by the vectors v1, ..., vr , we can associate to B the multivector:

λ= v1 ∧ · · · ∧ vr ∈Λr (A).

The multivector λ is determined up to scalars by B . If we choose a different basis, the corre-
sponding λ would simply be multiplied by the determinant of the base-change matrix, thus
we have a well defined map (so far as sets):

ψ : Gr(A, r )−→P (Λr A)

This map is in fact an inclusion because for any [w ] ∈ ψ(B ) in the image, we can recover B
as the space of vectors v ∈ A such that v ∧w = 0 ∈ Λr+1A. This embedding is called Plücker
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embedding and is well studied for instance in [7]. This embedding describes G (A, r ) as a sub-
variety of P (Λr A). In modern language the Grassmannian can be constructed as a scheme by
expressing it as a representable functor. We will assume this fact and work sometimes with
this scheme structure for Gr(A, r ).
To fix notation, we will write Gr(n , r ) for Gr(k n , r ) andP(A) is just Gr(A, 1) (equivalently this can
be seen as Proj(Sym(A∗)). With this notation, the global sections H 0(P(A),O (1)) are identified
with the linear functionals on A, that is, A∗. Here O (1) denotes the classical twisting sheaf of
Serre associated to the projective variety P(A).

One important notion regarding the study and understanding of the geometry of Grassman-
nians is the notion of Universal bundles. We will review the fundamental definitions and state,
but not proof, a correspondence between scheme morphisms, with G (A, r ) as target and cer-
tain kind of subbundles. This theorem will be relevant to study some properties of lines in the
Grassmannian.
As before, let A be a k -vector space of dimension n and set G =Gr(A, r ) the Grassmannian of
r -dimensional vector subspaces of A. The trivial vector bundle of rank n on G is just given by
V :=G ×A, its fiber at each point is the vector space A. Here it is important to recall that vector
bundles and locally free sheaves are virtually the same, so we will think the vector bundle as a
variety rather than a locally free sheaf.
Let S be the subbundle of V of rank r whose fiber at each point [W ] ∈G is the subspace W
itself; namely,

S[W ] =W ⊆ A =V[W ]

S is called the universal subbundle on G and the quotient bundle Q = V /S is called the
universal quotient bundle. In the case where r = 1 we have that G = P(A) ∼= Pn−1 and the
universal subbundle is just given by the dual of the Serre’s twisting sheaf OPn−1(1) which is the
line bundleOP(A)(−1). Furthermore, in the case r = n−1, the identification Gr(A, r ) =Gr(A∗, n−
r ) gives that G = P(A∗) and so the universal quotient bundle Q is the line bundle OP(A∗)(1). It
can be proved that these last S andQ are in fact vector bundles over G , see for instance [4,
Section 3.2.3]. Now we state the relevant correspondence:

Theorem 1.4 ([4]). Let X be any scheme. Then morphisms φ : X −→Gr(A, r ) are in one-to-one
correspondence with rank r subbundles F ⊆ A ⊗OX . Explicitly, φ corresponds to the bundle
F =φ∗S .

Definition 1.5. Let X be a k -projective variety. A linear system on X is a pair (T ,L ) consist-
ing of a line bundle (invertible sheaf) L and a k -vector subspace T of the global sections
H 0(X ,L ). If T =H 0(X ,L ) then the linear system is called complete. Usually we will refer just
to the subspace T letting the other data implicit.
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A point p ∈ X on which all elements of the linear system T vanish is called a base point of the
linear system. If T has no base points we say that it is base point-free. The set of base points
is called the base locus of the linear system and it is a closed subset of X . Taking the scheme-
theoretic intersection we can define the scheme-theoretic base locus or just base scheme. No-
tice that the linear system T is base point-free if ∩s∈T {s = 0} is the empty subscheme.

A very well known theorem in algebraic geometry states that there is a correspondence be-
tween invertible sheafs and maps to a projective space. Specifically:

Theorem 1.6. Let A be a ring and X be a scheme over A. Then ifφ : X −→Pn
A := ProjA[x0, ..., xn ]

is a morphism of schemes, the pullback of the invertible sheaf O (1) underφ,φ∗(O (1)), is also an
invertible sheaf on X and is generated by the global sections si =φ∗(xi ), i = 0, 1, ..., n. Conversely,
for any invertible sheafL and for all global sections s1, ..., sl that generate L there is a unique
morphismφ : X −→Pn

A such thatL ∼=φ∗(O (1)) and si =φ∗(xi ) under the isomorphism.

Proof. [8, II-Theorem 7.1].

A coordinate free version of the last theorem then state that any (finite dimensional) base-
point-free system (T ,L ) on X induces a morphism to a projective space

φT : X −→P(T ∗)

whereφ∗T
∼=L .

In what follows we will define what we mean by a line in a scheme and define the type of a
line.

Definition 1.7. A line l in P3
k = Proj(k [x0, ..., x3]) is defined to be a closed point in the variety

Gr(4, 2). The residue field of a closed point will be called the field of definition of l . Recall
that the residue field at a closed point on a scheme is defined as the the residue field of the
corresponding stalk at the point of the structure sheaf, which is by definition a local ring.

Remark 1.8. To any line l with field of definition L we can associated a closed subscheme of
P3

k in the following way: the closed point l ∈Gr(4, 2) defines a morphism Spec(L )−→Gr(4, 2).
Theorem 1.4 allow us to associate a rank 2 subbundle S ⊆ k 4 ⊗ L ∼= L 4 (since L is a field, the
structural sheaf of Spec(L ) is just L itself). Then the homogeneous ideal generated by ann(S )⊆
Sym((k 4)∗) defines a subscheme of P3

k . By abuse of notation we will denote this subscheme
with the same letter as the point l .

Interlude: Grothendieck-Witt group
The Grothendieck-Witt group mentioned in the motivation is a sufficiently complicated group
to support some invariants and is simple enough to make computations.
Let k be a field and M (k ) be the set of isomorphism classes of non singular quadratic forms
over k . It can be shown that M (k ) is a commutative semiring under the operations⊥and⊗ (see
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[11]). The additive structure⊥makes M (k ) into a monoid with the cancellation property thus
performing a Grothendieck group construction (also called group completion), we obtain a
group denoted by GW(k )which is just Gro(M (k )). For an element a ∈ kr{0} and for any x , y ∈
k , the element of the Grothendieck-Witt group represented by the symmetric, non singular
rank 1 bilinear form defined by (x , y ) 7→ a x y will be denoted by 〈a 〉.

1.3 Hyperbolic and elliptic lines

Let k be a field such that char(k ) 6= 2 and fix a cubic polynomial f ∈ k [x0, x1, x2, x3] that defines
a smooth cubic surface over k , namely X := {[p ] ∈P3

k : f (p ) = 0} .

Definition 1.9. If l is a line in X with field of definition L , we define T ⊆ (L 4)∗ =H 0(P3
L ,OX (1))

to be the vector space of linear polynomials that vanish on l .

The last definition could be not very enlightening, however it can be proved that it coincides
with the classical definition of Segre (see [5]). On the other hand, notice that T is canonically a
subspace of the vector space of global sections of OX (1), moreover if we denote the ideal sheaf
of the closed subscheme l by Il , T is also a subspace of the space of global sections of the sheaf
Il
∼= Il ⊗O (1) of linear polynomials vanishing on l . T can be alternatively described as ann(S )

for S ⊆ L 4.
The ideal sheaf Il is a line bundle because l is a codimension 1 closed subscheme of X ⊗ L
(where X ⊗ L denotes the subscheme obtained from X by base change from k to L , in some
books is denoted by XL ). Thus we have defined two linear systems on X : (T ,O (1)) and (T , Il (1)).
It turns out that (T ,O (1)) has base points (the points of l ) but the other system is base-point-
free.

Lemma 1.10. The linear system (T , Il (1)) considered before is a base-point-free system.

Proof. Proving that (T , Il (1)) is base-point-free is equivalent to show that the sheaf Il (1) is glob-
ally generated. Notice that Il (1) is the restriction of the sheaf on P3

L and by definition of the
subscheme l , it is generated by T . In consequence the same holds for X and therefore Il (1) is
globally generated.

Remark 1.11. We have seen that any base-point-free system induces a morphism to a projec-
tive space. Let’s denote byπ : X ⊗L −→P(T ∗) the morphism associated to (T , Il (1)). The restric-
tion ofπ to the closed subscheme l is a finite morphism of degree 2 (here the degree is regarded
as the degree of the corresponding field extension on function fields). Since char(k ) 6= 2, the
extension is therefore Galois (any degree 2 extension of fields is Galois). The Galois group
then has a nontrivial element of order 2. We will denote the nontrivial element of the Galois
group l −→ P(T ∗) by i : l −→ l . Since i has order 2, defines an involution which will play a
fundamental role in the definition below.
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Before stating such definition let’s remark that we will use the notion made by Morel of A1-
degree. Such definition requires a very good understanding of Motivic homotopy theory and
Milnor-Witt K-theory. However when considering the degree of the involution i before, there
are simpler descriptions and useful results used by Kass and Wickelgren to avoid this con-
struction. For the reader with knowledge in this area, let us mention that Morel constructed
the A1-degree as an isomorphism:

degA1 : [P1
k ,P1

k ]
A1
−→GW(k )

where the first group is the group of (stable pointed) A1-homotopy classes (constructed by
means of model categories) and the set on the right is the Grothendieck-Witt group Gro(M (k )).

Definition 1.12. A line l on X is said to be hyperbolic if its type defined as the expression
〈−1〉 ·degA1(i ) equals 〈1〉 in GW(k ). In any other case l is called elliptic.

Remark 1.13. In the previous definition if char(k ) = 2, the involution may not exist in which
case the type is undefined. We will see an example of this later.
On the other hand if we identify l with P1

L then i corresponds to a linear fractional transfor-
mation of the form a z+b

c z+d for a , b , c , d ∈ k . In this case theA1-degree of i is equal to 〈a d −b c 〉 ∈
GW(k ). In particular l being hyperbolic equals to −(a c − b d ) being a perfect square in L .

Before dealing with Euler numbers we will need some results about the involution i in order
to get simpler expressions for the A1-degree of the involution.

Lemma 1.14. Let l be a line defined by the subspace spanned by the vectors (0, 0, 1, 0)and (0, 0, 0, 1)
and let P0, P1 quadratic homogeneous polynomials in k [x0, x1, x2, x3] such that the polynomial
defining X can be written as f = x0P0+ x1P1.
If l lies in X , then the fiber of π : l −→ P(T ∗) over the k -point corresponding to the subspace
spanned by (a , b , 0, 0) ∈ T ∗ is

{a P0(0, 0x2, x3) + b P1(0, 0, x3, x4) = 0} ⊆ l .

Proof. Clearly the point corresponding to (a , b , 0, 0) is the zero set of the polynomial b x0−a x1,
considered as a global section of OP(T ∗)(1). By the construction of π : l −→ P(T ∗) is the zero
locus of b x0−a x1 considered as a global section of Ol ⊗ Il (1). If we can identify the last sheaf
withOl (2) then b x0−a x1 can be identified with the polynomial a P0(0, 0x2, x3)+b P1(0, 0, x3, x4).
For points in X , x0P0 + x1P1 = 0, so x1 = −

P1
P0

x2 and therefore as a section, x1 generates Il (1)
on P1 6= 0. Similarly x0 generates Il (1) on P2 6= 0. As a consequence, the analogue is true for
Ol ⊗ Il (1), and therefore the map sending x2 to −P0(0, 0, x2, x3) and x1 to P1(0, 0, x2, x3) defines
an isomorphism Ol ⊗ Il (1) ∼= Ol (2) that sends b x0 − a x1 to a P0(0, 0x2, x3) + b P1(0, 0, x3, x4) and
the lemma follows.

As a consequence of the last Lemma, notice that if X is the cubic surface defined by f =
x 3

0 + x 3
1 + x 3

2 + x 3
3 over the finite field F2, this surface contains the line l spanned by (1, 1, 0, 0)
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and (0, 0, 1, 1). Therefore, the lemma implies that the morphismπ : l −→P(T ∗)defines a purely
inseparable extension and in particular l does not admit a nontrivial automorphism compati-
ble withπ. This shows how the assumption char(k ) 6= 2 is necessary to define the types of lines.

Some results about the involution i will allow us to get expressions for degA1(i ). We summarize
such results below.

Proposition 1.15. Every nontrivial involution of the projective space P1
k is conjugate to the in-

volution z 7→ −α/z for some α ∈ k .

Proof. See [1, Theorem 4.2]

Proposition 1.16. The A1-degree of the involution i (z ) =−αz is 〈α〉 ∈GW(k ).

Proof. See [3, Theorem 3.6]

As a consequence of the last two propositions we have the following:

Corollary 1.17. Let i : P1
k −→ P

1
k be a nontrivial involution and D ∈ k the discriminant of the

fixed subscheme associated to i , then we have that:

〈−1〉degA1(i ) = 〈D 〉 ∈GW(k ).

Proof. The A1-degree and the class of the discriminant are invariant under conjugations [14]
therefore by Proposition 1.15 is sufficient to prove the corollary for the involution i (z ) = −αz .
The fixed subscheme for this particular involution is then {z 2+α= 0} and its discriminant is
clearly −4α. By manipulation of classes we have that 〈−4α〉 = 〈−α〉 and by proposition 1.16
the degree degA1(i ) = 〈α〉 thus

〈−1〉degA1(i ) = 〈−1〉〈α〉= 〈−α〉= 〈D 〉.

There is another interesting equality for theA1-degree of the involution i which will be useful
later:

Lemma 1.18. Let e1, .., e4 be a basis for k 4 and S := span(e3, e4) be a 2-dimensional subspace of
k 4 that defines a line contained in X . Then:

〈−1〉degA1(i ) =

�

Res

�

∂ f

∂ e1

�

�

�

�

S

,
∂ f

∂ e2

�

�

�

�

S

��

∈GW(L )

Proof. Corollary 1.17 says that it is enough to compute the discriminant of the fixed locus
of the involution. One can use the identification between the fixed locus and its image on
the ramification locus of the morphism π : l −→ P(T ∗) and compute the discriminant on the
ramification locus using Lemma 1.14. l can be assumed to be the line defined by the subspace
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span((0, 0, 1, 0), (0, 0, 0, 1)) (as soon as we extend scalars and choose the appropriate change of
coordinates). Write f = x1P1+ x2P2 and apply Lemma 1.14. This implies that the ramification
locus is defined as the locus where

a P1(0, 0, x3, x4) + b P2(0, 0, x3, x4)

has a multiple root in x3, x4. As a consequence, the ramification locus is the zero set of

Discx3,x4
(a P1(0, 0, x3, x4) + b P2(0, 0, x3, x4)).

Therefore, the discriminant of the image on the ramification locus and hence, the discrimi-
nant of the fixed locus of the involution is just,

Disca ,b

�

Discx3,x4
(a P1(0, 0, x3, x4) + b P2(0, 0, x3, x4))

�

∈ k/(k )∗.

On the other hand, if we differentiate f = x3P1+ x4P2, we get:

∂ f

∂ e1

�

�

�

�

S

= P1(0, 0, x3, x4)

∂ f

∂ e2

�

�

�

�

S

= P2(0, 0, x3, x4).

Therefore, if P1(0, 0, x3, , x4) =
∑

ai x i
3 x 2−i

4 and P2(0, 0, x3, x4) =
∑

bi x i
3 x 2−i

4 , then the computa-
tion of the resultant gives:

Res(P1(0, 0, x3, x4), P2(0, 0, x3, x4)) = a 2
1 b0b2−a2a1b0b1−a0a1b1b2+a 2

2 b 2
0 +a0a2b 2

1 +a 2
0 b 2

2 −2a0a2b0b2

=
1

16
Disca ,b

�

Discx3,x4
(a P1(0, 0, x3, x4) + b P2(0, 0, x3, x4))

�

Since they both differ only by a number, its classes in the Grothendieck-Witt group are the
same and the Lemma follows.

1.4 Euler numbers

Here we will define Euler numbers in GW(k ) for algebraic vector bundles that are "relatively"
oriented. This notion needs to be considered because the Grassmannian Gr(4, 2) has a non-
orientable tangent bundle, however it is relatively oriented. Here X will denote a smooth r -
dimensional k -scheme.

Definition 1.19. Letπ : E −→ X be a rank r algebraic vector bundle on a smooth r -dimensional
k -scheme X . A orientation of E consists of a line bundle L and a isomorphism of the form
L ⊗ L ∼= ΛrE . Furthermore a relative orientation of E is an orientation of the vector bundle
Hom (ΛrT X ,ΛrE ), here T X denote the tangent bundle of X .
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Example 1.20. If X =P1 andO (−1) is its tautological vector bundle, thenΛtopT X ∼= T X ∼=O (2).
Thus line bundles O (n ) on P1 are relatively oriented if and only if n is even.

Remark 1.21. Let π : E −→ X a relatively oriented rank r vector bundle. On an open subset
U of X , a sectionσ of Hom (ΛrT X ,ΛrE ) is called a square if its image under the isomorphism
Γ (U , Hom(Λr T X ,Λr E ))∼= Γ (U , L ⊗ L ) is the tensor square of a section in Γ (U , L ) = L (U ).

The Euler number for a vector bundle could have been defined as in 1.1. Recall that it was
defined as a sum of local degrees of a section with isolated zeros, however this definition is
linked to choosing trivializations of the vector bundle in order to identify the section with a
function. For oriented vector bundles this works good, but if E is not oriented and if we change
the local trivialization by a linear function with negative determinant this will change the sign
of the local degree. That’s why in 1.1 we asked for trivializations compatible with the orien-
tations. To sum up, we must choose coordinates and trivializations that are compatible with
the relative orientation. The "good" coordinates we should then consider are called Nisnevich
coordinates:

Definition 1.22. Let p be a closed point of X and U be a open Zariski neighborhood of p . An
étale map φ : U −→ Ar = Spec[x1, ..., xr ] is called Nisnevich local coordinates around p if the
induced map of residue fields k (φ(p ))−→ k (p ) is an isomorphism.

When k (p ) is a separable extension of k and r ≥ 1, Nisnevich coordinates are guarantee to
exist. This is justified thanks to the following proposition from [2]:

Proposition 1.23. If X is a smooth curve over k and p is a closed point of X such that k (p ) is a
separable extension of k , then there exists Nisnevich coordinates around p .

Local coordinates around a point p give a distinguished trivialization of T X . Taking the wedge
product of the basis of vector fields (sections of T X ), we obtain a distinguished section in
Λr T X (U ) for some neighborhood U of p . Similarly, a choice of local trivialization of E gives
a distinguished section in Λr E (U ), by possibly shrinking U this gives a distinguished section
of Hom(Λr T X ,Λr E )(U ). This motivates the following definition:

Definition 1.24. Local coordinates and a trivialization of the vector bundle E on a open neigh-
borhood U of p are compatible with the relative orientation of E if the distinguished section
of Hom(Λr T X ,Λr E )(U ) is the tensor square of a section in L (U ), where L denotes the line
bundle coming from the orientation of E .

This provides a good definition of "compatibility" in terms of Nisnevich coordinates. Letφ be
Nisnevich coordinates around p . Since φ is étale, the standard basis for the tangent space of
Ar

k provides a local trivialization for the restriction vector bundle T X |U . By potentially shrink-
ing U we can assume that the restriction of E to U is trivial.
A trivialization of E |U is then called compatible with φ and the relative orientation if the dis-
tinguished section of Hom(Λr T X |U ,Λr E |U ) taking the distinguished basis of Λr T X |U to the
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distinguished basis ofΛr E |U is a square, that is, it is the image of the tensor square of a section
in L (U ) under the isomorphism Hom(Λr T X ,Λr E ) ∼= L ⊗ L , where L comes from the relative
orientation.

Let’s fix φ : U −→ Ar
k Nisnevich coordinates around p and ψ : E |U −→ O r

U be a local trivial-
ization of E which is compatible with the relative orientation (considerations are made after
possibly shrinking U ). Before proving and stating some technical results let’s see how we can
define the local degree of a section with only "isolated" zeros (see Definition 1.25).
Letσ be a global section of E and p be an isolated zero. The compositeψ◦σ|U is then an ele-
ment of O r (U ). We wish to identify the section with a functionAr −→Ar that is, we want that
each of the r components ofψ◦σ|U to be in the image of the pullbackφ∗ :OAr −→OU . If X is
covered by open sets of the form Ar (like the Grassmannian) the latter can be done because
φ can be chosen to be an isomorphism on local rings. The general case requires a little more
work and involves adding an element G = (g1, ..., g r ) of O r

U so that G +ψ ◦σ =ψ∗(F ) for some
F :Ar −→Ar . We can then define

degp σ= degφ(p ) F.

In what follows we will focus on this construction and on proving that the definition of the
degree is independent of the choices ofφ,ψ and G .

As before, let φ : U −→ Ar
k be Nisnevich coordinates around p and ψ : E |U −→ O r

U be a local
trivialization of E . Let rU ∈ L (U ) denote the element such that rU ⊗ rU is mapped to the dis-
tinguished section of Hom(Λr T X |U ,Λr E |U ) under the isomorphism provided by the relative
orientation. Let σ be a global section of E and denote Z ⊆ X the closed subscheme defined
by the zero locus ofσ, that is, Z := {σ= 0}.

Definition 1.25. A closed point p of X is called isolated zero of σ if p ∈ Z and its local ring
OZ ,p is a finite k -algebra. Moreover if OZ is a finite k -algebra, we say thatσ has isolated zeros.

Some authors define isolated points as points for which there exists a Zariski open neighbor-
hood U in such a way that the set-theoretic intersection U ∩Z only contains the isolated point
in consideration. This is in fact an equivalence as we prove next.

Proposition 1.26. Under the same notations of the last definition, a point p of X is an isolated
zero of σ if and only if there exists a Zariski open neighborhood U of p such that U ∩Z = {p}.
Furthermore,σ has isolated zeros if and only if Z consists of finitely many closed points.

Proof. Suppose p is an isolated zero of σ, then since OZ ,p defines a finite k -algebra its di-
mension must be zero, and since p is closed OZ ,p/p also has dimension 0. The irreducible
component of Z that contains p is then a finite type subscheme Z0 over k , and therefore we
have:



14 1 Arithmetic counts of lines

dim(Z0) = dim(OZ ,p ) +dim
�

OZ ,p/p = 0
�

.

It follows that Z0 is irreducible, has dimension zero and is finite type over k thus it must be
a single point and there is no other option than p . Define U to be the complement of the
union of the other irreducible components of Z . Clearly U is Zariski open and U ∩Z = {p}.
Conversely, if p is a closed point such that there is a Zariski open neighborhood U such that
U ∩Z = {p} this clearly implies that the dimension of the irreducible component of Z con-
taining p is zero and therefore Z0 is finite type over k (because is zero dimensional). Using
the same dimensional equality we used before we can conclude that OZ ,p is a finite k -algebra
and the point p is isolated. The last part of the proposition follows thanks to the fact that zero
dimensional Noetherian rings have finitely many points so when σ has isolated zeros, Z has
finitely many points. Using the fact that Z is zero dimensional it can be also prove that all
points of Z are closed and therefore Z is a zero dimensional finite type k -algebra and there-
fore finite.

Lemma 1.27. Let p be an isolated zero of σ. Then OZ ,p is finitely generated as a k -algebra by
x1, ..., xr . Moreover, for any positive integer m, the local ring OX ,p/p

m is finitely generated as a
k -algebra by x1, ..., xr .

Proof. We claim that it is sufficient to show the second assertion. Indeed, since p is an isolated
zero, OZ ,p is finite and therefore there is a positive integer m such that p m is the zero ideal in
OZ ,p . The ring OZ ,p can be seen as a quotient of OX ,p , hence the first statement in the lemma
is just a particular case of the second one.
Let φ : U −→Ar = Speck [x1, ..., xr ]Nisnevich coordinates around p and let q ⊆ k [x1, ..., xr ] be
the corresponding prime ideal such that φ(p ) = q . We know that φ induces an isomorphism
on the residue field of p , that is, k [x1, ..., xr ]/q −→ OX ,p/p is an isomorphism. We claim that
for any positive integer m , the map k [x1, ..., xr ] −→ OX ,p/p

m is surjective. In fact, if m = 1
the claim is trivial by construction. Now by induction on m , let’s assume the result is true
for all positive integers less than m . Then, given an element ȳ ∈ OX ,p/p

m , by the inductive
hypothesis there is a ȳ ′ on the image such that y − y ′ ∈ p m−1. Write y − y ′ as y − y ′ =

∑

i ai bi

for some ai ∈ p m−1 and bi ∈ p . The Nisnevich coordinates φ is an étale map and therefore
induces an isomorphism on cotangent spaces, thus it follows that there are a ′i ∈ p m−2 and
b ′i ∈ p in the image such that ai −a ′i ∈ p m−1 and bi −b ′i ∈ p 2. As a consequence, in the quotient
OX ,p/p

m we have that
∑

i ai bi =
∑

a ′i b ′i . This last sum is clearly an element of the image, which
means that there is an element f ∈ k [x1, ..., xr ] such that f 7→

∑

a ′i b ′i =
∑

i ai bi = y .

We have seen that if p is an isolated zero of a global sectionσ of E , then choosing a compatible
trivialization of E |U gives a local expression forσ as a r -tuple of functions ( f1, ..., fr ) :Ar −→Ar .
These functions can be seen as elements of the local ring OX ,p by restriction. The local ring
OZ ,p is then isomorphic to OX ,p/〈 f1, ..., fr 〉 and there is a commutative diagram:
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k [x1, ..., xr ]

OX ,p OZ ,p

The ring OZ ,p is finite (p is a isolated zero) and therefore there is a positive integer m such that
p m = 0 in the quotient OZ ,p

∼= OX ,p/〈 f1, ..., fr 〉. In particular, the latter implies that 〈 f1, ..., fr 〉 =
〈 f1, ..., fr 〉+ p m in OX ,p . Lemma 1.27 implies that k [x1, ..., xr ] −→ OX ,p/p

2m is surjective, thus
there are polynomials g1, ..., g r in x1, ..., xr such that g i − fi ∈ p 2m . The following lemmas serve
to justify the good definition of "index" for their proofs we refer to [9].

Lemma 1.28. The sets of functions g i and fi defined before satisfy the following equality of
ideals: for any positive integer e we have 〈g1, ..., g r 〉e = 〈 f1, ..., fr 〉e in OX ,p .

Lemma 1.29. The inverse of the pullback under the Nisnevich coordinates φ satisfy that
(φ∗)−1(〈 f1, ..., fr 〉)e = 〈g1, ..., g r 〉e in k [x1, ..., xr ]q for all positive integers e .

Lemma 1.30. There is an isomorphism OZ ,p
∼= k [x1, ..., xr ]q/〈g1, ..., g r 〉.This quotient is a finite

complete intersection ring.

Last isomorphism determines another isomorphism

Homk (OZ ,p , k )∼=OZ ,p

of OZ ,p -modules. Denote by η the element of Homk (OZ ,p , k ) which is the image of the unit 1
in OZ ,p . A detailed discussion and justification of the existence of such isomorphism can be
found in [17].

Proposition 1.31. η is independent of the choice of g1, ..., g r .

Remark 1.32. Associated to ηwe have a symmetric bilinear form β on OZ ,p defined by

β (x , y ) =η(x y ).

Since the map y 7→ η(x y ) in Homk (OZ ,p , k ) is send it to x in OZ ,p under the isomorphism
Homk (OZ ,p , k )∼=OZ ,p , it follows that β is non-degenerate.

Now, consider φ,φ′ : U −→ Speck [x1, ..., xr ] Nisnevich coordinates near p andψ,ψ′ : E |u −→
O r

U local trivializations compatible withφ andφ′ respectively. Lemma 1.31 implies that there
are elements of Homk (OZ ,p , k ) denoted by η,η′ : OZ ,p −→ k associated to (φ,ψ) and (φ′,ψ′) ,
respectively. We then have the corresponding associated non-degenerate symmetric bilinear
forms β ,β ′ and denote by rU , r ′U the corresponding elements of L (U ) associated to (φ,ψ) and
(φ′,ψ′) respectively (see observation before 1.25). rU and r ′U are non-vanishing by construc-
tion and so rU /r ′U is a section in O ∗(U ). The following is a technical lemma that we will not
prove. The proof is very detailed in [9] and the important thing here is that it will be useful to
justify our definition of local index and its independence.
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Lemma 1.33 ([9]). There is an isomorphismOZ ,p −→OZ ,p given by multiplication by rU /r ′U such
that its pullback sends β to β ′.

Definition 1.34. The local index (or also local degree as we said before) of a global section σ
of E at p is defined as the element indp (σ) of GW(k ) represented by the symmetric bilinear
form β (x , y ) =η(x y ), for x , y in OZ ,p .

The relevant result about the local index is a simply consequence of the technical lemmas
stated before.

Theorem 1.35. Suppose p is an isolated zero of a global section of E and that Nisnevich co-
ordinates exist around p . Then the local index indp (σ) exist and is independent of the choice
of:

• The Nisnevich coordinatesφ : U −→Ar .

• The compatible trivialization of E |U .

• g1, ..., g r .

Proof. Lemma 1.30 the and the correspondent isomorphism Homk (OZ ,p , k ) ∼= OZ ,p imply the
existence of η and therefore indp (σ). Moreover, η is independent of g1, ..., g r by Lemma 1.31,
thus β does not depend on g1, ..., g r and thus the same happens for indp (σ). Finally the proof
of Lemma 1.33 contained in [9] shows that β is independent of the choice of Nisnevich coor-
dinates and the theorem follows.

Local indexes can be computed by reducing to the case where p is a k -point and using descent
theory. In the case where the residue field extension k ⊆ k (p ) is separable, one can also change
the base field for k (p ) and apply traces. Perhaps one of the most relevant examples in this
area is the computation of the index when X = Ar , p = 0 and E = O r where E is given the
canonical relative orientation. Kass and Wickelgren proved that in this case the Einsenbud-
Khimshiashvili-Levine class of a polynomial function with an isolated zero at the origin is the
local A1 degree [10].

Example 1.36. Let X , p and E as before. A global section σ of E can be seen as a function
σ : A1

k −→ A
1
k and by [10] the index indp (σ) is the Grothendieck-Witt class of Einsenbud-

Khimshiashvili-Levine signature which is equivalent to the A1-Brouwer degree. Moreover, if
( f1, ..., fr ) denote the coordinate projections ofσ, there are ai j ∈ k [x1, ..., xr ] such that

fi =
r
∑

j=1

ai j x j .

One can choose η such that ηmaps the "distinguished socle" element, defined by det(ai j ), to
1. In this case indp (σ) is represented by the bilinear form β in k [x1, ..., xr ]/〈 f1, ..., fr 〉 defined
by β (x , y ) =η(x y ).
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Definition 1.37. Let k ⊆ L be a separable field extension. The Scharlau trace, TrL/k : GW(L )−→
GW(k ) is defined as the map that takes the class of a bilinear form β : V ⊗V −→ L over L and
send it to the class of β composed with the field trace, tr : L −→ k (where V is considered now
as a k -vector space).

The good thing about the Scharlau trace is that reduces the computation of indp (σ) to the case
where p is rational:

Theorem 1.38. Assume k ⊆ k (p ) is a separable field extension where p is a isolated zero of σ
such that there exists Nisnevich coordinates around p . In addition, let Xk (p ) be the base change
of X to k (p ), pk (p ) be the point of Xk (p ) determined by p : Speck (p ) −→ X and σk (p ) the base
change ofσ. Then

indp (σ) = Trk (p )/k indpk (p )
σk (p ).

Finally we can define the Euler number associated to an algebraic vector bundle.

Definition 1.39. Let π : E −→ X be a rank r relatively oriented vector bundle over a smooth
k -scheme of dimension r . Letσ be a global section of E with isolated zeros and such that for
any isolated zero there exists Nisnevich coordinates around it. The Euler number of E relative
toσ, denoted by e (E ,σ) is defined as:

e (E ,σ) :=
∑

p∈Z0

indp (σ).

Here Z0 denotes the set of closed points of Z = {σ= 0}.

Let π : E −→ X a vector bundle as before and let E be the pullback of E to X ×A1. E inherits
a relative orientation from E . For a closed point t ∈ A1, Et will denote the pullback of E to
X ⊗ k (t ) and similarly for any section s of E , st will denote the pullback of s . We have the
following:

Lemma 1.40 ([9]). If X is a proper scheme and s is a section of E such that st has isolated zeros
and Nisnevich coordinate for all closed points t of A1. Then, there exists a finite O (A1)module
and a non-degenerate symmetric bilinear form β such that for any closed point t ofA1, there is
an equality βt = e (Et , st ) in k (t ).

Non-degenerate symmetric bilinear forms overA1
k have the property that their restrictions to

rational different points are stably isomorphic. This result was proved also by Kass and Wick-
lengren using a modified version of Harder’s theorem (See [10, Lemma 31]). This implies that
e (E , st ) = e (E ′t , s ′t ) (by using 1.40 combined with the mentioned result from Kass and Wickel-
gren). This motivates the following:

Definition 1.41. Two sections σ and σ′ of E with isolated zeros are said to be connected by
sections with isolated zeros if there are sections si for i = 0, 1, ..., N of E and rational points t −i
and t +i of A1 for i = 0, 1, ..., N such that:
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• For i = 0, 1, .., N and all closed points t of A1, the section (si )t of E has isolated zeros.

• (s0)t +0 is isomorphic toσ.

• (sN )t +N is isomorphic toσ′.

• For i = 0, ..., N −1, we have that (si )t +i is isomorphic to (si+1)t −i+1
.

When the sectionsσ andσ′ can be connected as before, i.e, by a family of sections parametrized
by A1 with only isolated zeros, the Euler number is well defined which means that does not
depend on the sectionσ. This is summarized in the following theorem:

Theorem 1.42. Letπ : E −→ X be a rank r relatively oriented vector bundle on a smooth, proper
scheme X of dimension r . Letσ andσ′ be sections of E with isolated zeros. If after a base change
by an odd degree field extension L of k , the sections can be connected by sections with isolated
zeros then its Euler number coincide, namely,

e (E ,σ) = e (E ,σ′).

Moreover, if after the same odd degree base change of fields any two sections can be connected
by sections with isolated zeros then the last equality holds for the arbitrary sections. In this case
we can define the Euler number of the vector bundle E as e (E ) := e (E ,σ) for any section with
isolated zeros.

Proof. The first assertion implies the second one so it is sufficient to prove the first one. Let
k ⊆ L be a field extension of finite odd degree. Tensor with L provides and injective map
GW(k )−→GW(L ) so one may assume thatσ andσ′ can be connected by sections with isolated
zeros where the scheme X is considered over k . By hypothesisσ andσ′ can be connected by
sections with isolated zeros, this implies that it is sufficient to prove that: For a section s of
E such that st has isolated zeros for all closed points t , then e (E , st ) = e (E , s ′t ) for k -rational
points t and t ′ of A1. Lemma 1.40 guarantees the existence of a finite O (A1)-module and a
non-degenerate bilinear form β such that βt = e (E , st ) and βt ′ = e (E , st ′). Thus the statement
is reduced to proving that βt =βt ′ in GW(k ). This again was proved by using Harder’s theorem
in [10, Lemma 31].

1.5 Arithmetic count of lines

This section is the heart of this work and is where we will use the results from the previous
sections to study the proof of the arithmetic count of lines on smooth cubic surfaces. The goal
is to prove the theorem below. Before stating the theorem, is important to recall the approach
of Kass and Wickelgren. The idea is to identify the arithmetic count of the lines with the Euler
number of a vector bundle on the Grassmannian Gr(4, 2) of lines in P3. So the general idea
behind is something similar to the one we already saw in the Motivation 1.1, in particular in
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the proof of Theorem 1.1. Behind the scenes is acting some kind of "categorization" where
the arithmetic is replaced by appropriate classes using Euler numbers. This is important to
highlight and it is perhaps one of the main reasons that have motivated the author to study
these topics. The works of Morel and Voevodsky have opened the door to new strategies and
tools to prove arithmetical results and many others. To mention one of the most relevant, we
have the proof of the Milnor conjecture made by Voevodsky. One good reference regarding the
applications in Enumerative Geometry is Levine’s article "Toward an enumerative geometry
with quadratic forms" [12].
The main theorem of this section is the following:

Theorem 1.43. Let k be a field and let X ⊆ P3
k be a smooth cubic surface. Then the lines on X

satisfy:

∑

lines l with field L

�

(hyperbolic lines)TrL/k (〈1〉) +
∑

h∈L∗/(L∗)2
(elliptic lines of type h ) ·TrL/k (〈h〉)

�

= 15〈1〉+12〈−1〉.

1.5.1 The distinguished bundle and its orientation

Let x1, x2, x3, x4 denote the dual basis of the standard basis of k 4 and let B = {e1, e2, e3, e4} be
other basis for k 4 with associated dual basis {φ1,φ2,φ3,φ4}. We start by giving an orientation
to the vector bundle on which we will apply all the theory studied before.

Definition 1.44. LetS the universal subbundle on Gr(4, 2) andQ the quotient bundle on the
same Grassmannian. Set E := Sym3(S ∗).
The global section σ f associated to an homogeneous degree 3 polynomial f ∈ Sym3((k 4)∗) is
defined as the image of f under the homomorphism Sym3(O 4)−→E induced by the inclusion
S ,→O 4.

As we saw in the first sections, if S ⊆ k 4 is a 2-dimensional subspace, then the fiber of E at the
corresponding point of Gr(4, 2) can be think as the space of homogeneous degree 3 polynomi-
als on S , namely Sym3(S ∗). σ f evaluated at this point is just the restriction f |S .

The tangent bundle to Gr(4, 2) admits a description in the language of universal bundles (see
[4, Section 3.2.4]) as follows:

T (Gr(4, 2)) =HomGr(4,2)(S ,Q) =S ∗⊗Q.

In the following we will focus on give an explicit relative orientation of E . We will need the
following:
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Definition 1.45. Consider the basis B defined before and define:

∼
e1 := e1
∼
e2 := e2
∼
e3 := x e1+ y e2+ e3
∼
e4 := x ′e1+ y ′e2+ e4

The elements we just defined
∼
e1,

∼
e2,

∼
e3,

∼
e4 are in

�

k [x , x ′, y , y ′]
�4

and a computation show that

they form a basis. We will denote its dual basis by
∼
φ1,

∼
φ2,

∼
φ3,

∼
φ4.

Proposition 1.46. The morphism Spec
�

k [x , x ′, y , y ′]
�

= A4
k −→ Gr(4, 2) is an open immersion.

This morphism has the property that the pullback ofS under this morphism gives the subspace:

k [x , x ′, y , y ′]
∼
e3+k [x , x ′, y , y ′]

∼
e4 ⊆

�

k [x , x ′, y , y ′]
�4

.

Proof. Denote Gr(4, 2) = G . If q : O 4
G −→ Q and define a morphism O 2

G −→ O
4

G by (a , b ) 7→
a e1+ b e2. Therefore if q :O 4

G −→Q is surjective, we can consider the composition:

O 2
G −→O

4
G

q
−→Q

By [6, Lemma 9.7.4.6] the subfunctor of G parametrizing quotients q such that the last com-
position is an isomorphism, is represented by the morphism A4

k = Spec(k [x , x ′, y , y ′]) −→G .
The subfunctor is open and therefore the morphism is an open immersion.

We denote by U (B ) ⊆ G the image of the morphism Spec
�

k [x , x ′, y , y ′]
�

= A4
k −→ G . The

collection {U (B )} is an standard open cover that trivializes the universal subbundle and the
quotient bundle.

Lemma 1.47. In terms of the last collection {U (B )}, the restrictions T G |U (B ) and E|U (B ) have
bases given by:

β0 := {
∼
φ3⊗

∼
e1,

∼
φ4⊗

∼
e1,

∼
φ3⊗

∼
e2,

∼
φ4⊗

∼
e2} (1-5)

β1 := {
∼
φ3,

∼
φ2

3

∼
φ4,

∼
φ3

∼
φ2

4 ,
∼
φ3

4} (1-6)

respectively. In particular, Hom(Λ4T G ,Λ4E )|U (B ) is freely generated by a section ν(B ) that maps
the wedge products of the sections in β0 to the wegde product of the sections in β1.
If a second base is given, say B ′, and is such that span(e3, e4) = span(e ′3, e ′4), the sections ν(B ) and
ν(B ′) satisfy:

ν(B ′) =
�

1

(a d − b c )2(αδ−βγ)

�2

ν(B ).
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Where α,β ,γ,δ, a , b , c , d are defined by the following:
∼
e ′1 =α

∼
e1+β

∼
e2+ z

∼
e ′2 = γ

∼
e1+δ

∼
e2+w

∼
e ′3 = a

∼
e3+ b

∼
e4

∼
e ′4 = c

∼
e3+d

∼
e4

here z , w ∈ span(
∼
e3,

∼
e4).

Proof. The fact β0 and β1 are bases is clear from the definitions and clearly implies that ν(B )
maps the elements of β0 to the elements of β1. Now, denote by β ′0 and β ′1 the corresponding
basis as in (1-5) and (1-6) associated to the basis B ′. Let det0 be the determinant of the change
of base matrix related to β0 and β ′0 and det1 be the determinant of the change of base matrix
related to β1 and β ′1. Since ν(B )maps the wedge products of β0 to the wedge products of the
elements of β1 and ν(B ′) does the same β ′0 and β ′1, a computation on the respective bases
shows that:

ν(B ′) =
det1

det0
ν(B ).

By defining:
∼
e ′3 = a

∼
e3+ b

∼
e4

∼
e ′4 = c

∼
e3+d

∼
e4

we have that the elements of the dual basis are related by:
∼
φ′3 = A

∼
φ3+C

∼
φ4+Z

∼
φ′4 = B

∼
φ3+D

∼
φ4+W

where Z , W ∈ span(
∼
φ1,

∼
φ2) and

�

a b
c d

�−1

=

�

A B
C D

�

The matrix with uppercase letters is the change of base matrix that relate
∼
φ3,

∼
φ4 with

∼
φ′3,

∼
φ′4

thanks to the fact that
∼
φ1,

∼
φ2 are zero onS |U (B ). Therefore, using the expressions for

∼
e ′1 and

∼
e ′2

it can be shown that

det0 =
(αδ−βγ)2

(a d − b c )

det1 =
1

(a d − b c )6

and the result follows.
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Define L to be the product Λ2Q∗ ⊗Λ2S ∗ ⊗Λ2S . By taking exterior powers in the sequence
0−→S −→O 4

G −→Q −→ 0, it turns out that L is isomorphic to Λ2S 2. The tensor product of
L with itself will define the required relative orientation for E , the next corollary justify this
and is basically an application of Lemma 1.47.

Corollary 1.48. There is an isomorphism j : Hom(Λ4T G ,Λ4E )−→L⊗L such that the restric-

tion to U (B )maps ν(B ) to (
∼
φ1∧

∼
φ2)⊗(

∼
φ3∧

∼
φ4)⊗(

∼
φ3∧

∼
φ4). Moreover, this isomorphism is unique.

As we said before, the line bundle L and the isomorphism j provide the relative orientation
we wanted:

Definition 1.49. The distinguished relative orientation of E is the pair (L,j).

The relative orientation (L,j) is determined in a unique way thanks to the fact that the line
bundle L is a square root of Hom(T (G ),E ) (The Picard group of G has no torsion) so there
is no other choice of line bundle. If we consider the morphisms a · jfor a ∈ k , these are alsp
isomorphism between Hom(Λ4T G ,Λ4E ) and L⊗L, however j has the property that the local
index of σ f at a zero is equal to the type of the corresponding associated line. Moreover j is
defined over Z and therefore is characterized in a unique way. Let’s see how we can identify
the local index ofσ f at a zero with the type of the corresponding line.

Lemma 1.50 ([9]). Let S ⊆ k 4 be a subspace such that f |S vanishes. Then the differential ofσ f at
the corresponding k -point of G is given by the map S ∗⊗Q −→ Sym3(S ∗) that sendsφ⊗(v +S ) 7→
�

∂ f
∂ v

�

�

S
·φ
�

.

By construction, the zero locus ofσ f is the set of lines contained in the cubic surface defined
as the zero set of f .

Lemma 1.51. Let S = k ·e1+k ·e2 ⊆ k 4 be a subspace. Then the derivative ofσ f at a zero defined
by S corresponds to

Res
�

∂ f

∂ e1
(x e3+ y e4),

∂ f

∂ e2
(x e3+ y e4)

�

where e3, e4 ∈ k 4 are such that e1, e2, e3, e4 is a basis for k 4. The resultant is seen in k/(k ∗)2.

Proof. One can compute the matrix of the differential Hom(S ,Q) −→ Sym3(S ∗) with respect
to the bases φ3 ⊗ e1,φ4 ⊗ e1,φ3 ⊗ e2,φ4 ⊗ e2 and φ3

3 ,φ2
3φ4,φ3φ

2
4 ,φ3

4 (see 1.45 and 1.50). Such
matrix is given by:

A =









a1,0,2,0 0 a0,1,2,0, 0
a1,0,1,1 a1,0,2,0 a0,1,1,1 a0,1,2,0

a1,0,0,2 a1,0,1,1 a0,1,0,2 a0,1,1,1

0 a1,0,0,2 0 a0,1,0,2









The last matrix is also the Sylvester matrix of the polynomials ∂ f
∂ e1
(x e3+ y e4) and ∂ f

∂ e2
(x e3+ y e4),

where they are considered as polynomials inφ3 andφ4. By definition of the determinant of a
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Sylvester matrix, such determinant is the resultant of the last two polynomials. On the other
hand, by Lemma 1.50 and the definition of the distinguished orientation, the differential of
σ f is the class of det(A) and the lemma follows.

By the Lemma 1.18 we know that the type of a line equals the class of the resultant of the partial
derivatives of f with respect to e1 and e2 and the last lemma says that such resultant is equal
to the derivative ofσ f at a zero. This combination of the two results imply the following:

Corollary 1.52. The type of a line l on a smooth cubic surface defined by X = { f = 0} is equal to
the index of σ f at the corresponding zero. In particular the line is hyperbolic if and only if the
index is 〈1〉.

Corollary 1.53. The section σ f where f defines a smooth cubic surface has only simple zeros.
Moreover, if the surface is not smooth, i.e, is possibly singular and is defined by { f = 0}, a line
on the surface corresponds to a simple zero ofσ f .

Proof. First start by extending scalars to the algebraic closure of k , k̄ . With the same notations
as in Lemma 1.51 is sufficient to show that the resultant

Res
�

∂ f

∂ e1
(x e3+ y e4),

∂ f

∂ e2
(x e3+ y e4)

�

is nonzero (The resultant of the partial derivatives is the discriminant, and if vanishes at a
point, then the zero is multiple). If its zero, there will be a vector v ∈ k 4r {0} such that

∂ f

∂ e1
(v ) =

∂ f

∂ e2
(v ) = 0.

Since f vanishes at S = k e3 + k e4, we also have that ∂ f
∂ e3
(v ) = ∂ f

∂ e4
(v ) = 0 and so the subspace

k · v ⊆ k 4 defines a point in P3
k contained in the singular locus of X . However X is smooth

along the line so we get a contradiction.

Finally we notice that in this particular case, the existence of Nisnevich coordinates is satisfied
because the field of a definition of a line is always a separable extension of k (See 1.23).

Corollary 1.54. Let l be a line contained in a smooth cubic surface. Then the field of definition
of l is a separable extension of the ground field k .

Proof. Recall that for schemes defined over a field k , being geometrically reduced is equiva-
lent to have separable extensions k (p ) of k for any closed point. Therefore, if L denotes the
field of definition of the line, the natural inclusion Spec(L ) −→ {σ f = 0} defines a connected
component of {s i g ma f = 0}. Corollary 1.53 implies that {σ f = 0} is geometrically reduced,
since connected components of a geometrically reduced scheme are also geometrically re-
duced it follows that Spec(L ) is itself geometrically reduced. By the equivalence it follows that
L/k is separable.
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1.5.2 The Euler number is well defined

Now we will show that in this particular case, the sections of the distinguished vector bundle
can be connected by sections with isolated zeros or in other terms, we need to show that there
are many sections of E that in some sense, avoid the locus of sections with non isolated zeros.
This will imply the good definition of the Euler number e (E ) (see 1.42).

Definition 1.55. Consider the vector space (k 19)∗ and denote the dual of its standard basis by
{ai , j ,k ,l : i + j +k + l = 3}. Define:

V :=
¦∑

ai , j ,k ,l x i
1 x j

2 x k
3 x l

4 = 0
©

⊆P19
k ×k P3

k .

and denote by Vsing ⊆ V the non smooth locus of V → P19
k , Il ⊆ V the intersection

Vsing ∩{Hess( f ) = 0} and I2 the closure of the complement of the diagonal in Vsing×P19
k

Vsing.

Lemma 1.56. The images under the respective projections of I1 and I2 onto P19k are closed sub-
sets of dimensions 17.

Proof. As we did for the Corollary 1.53, is sufficient to prove the assertion after extending
scalars to the algebraic closure of k , so without loss of generality let’s assume k = k̄ . Let
π1 : I1 −→ P3

k and π2 : I2 −→ P3 ×k P3
k be the respective projections. The fiber of the subspace

(0, 0, 0, 1) ·k under the projection is defined by equations:

a1,0,0,2 = a0,1,0,2 = a0,0,1,2 = a0,0,0,3

and

a2,0,0,1a 2
0,1,1,1−a1,0,1,1a1,1,0,1a0,1,1,1+a0,2,0,1a 2

1,0,1,1+a0,0,2,1a 2
1,1,0,1−4a0,0,2,1a0,2,0,1a2,0,0,1 = 0.

These equations form a regular sequence and therefore they define an irreducible subvariety
of P19k of dimension 14= 19−5. Same thing is true for all other fibers ofπ1 so I1 is irreducible
of dimension 14+3= 17. Clearly this implies I1 is closed. An analogous argument proves the
same for I2.

Definition 1.57. Define D0 ,→ H 0(G ,E ) to be the k -points of the affine cone over the union
π1(I1) and π2(I2). That is, D0 si the subset of f ’s such that the variety { f = 0} ⊗ k̄ has at least
two singularities or has a singularity at which Hess( f ) = 0.

It turns out that D0 contains the global sections with a non isolated zero:

Lemma 1.58 ([9]). Let f ∈H 0(G ,E )rD0. Then the associated sectionσ f has only isolated zeros.

Theorem 1.59. If σ and σ′ are sections of E = Sym(S ∗) with isolated zeros, then they can be
connected by sections with isolated zeros.
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Proof. It is enough to prove that after extending scalars to an odd degree field extension, any
two sections of H 0(G ,E )rD0 can be connected by affine lines that not intersectD0 (see ?? and
1.58). This is thanks to the fact that D0 equals the k -points of a subvariety of codimension at
least 2. Indeed, if f , g ∈ H 0(G ,E ) and k is finite, then after a odd degree extension one can
choose a 3-dimensional subspace S ⊆H 0(G ,E ) such that S∩D0 equals the k -points of the cone
over a 0-dimensional subscheme. D0 is then a finite union of 1-dimensional subspaces. By
choosing a larger extension of odd degree the number of 1 dimensional subspaces contained
in D0 is less than the number of 2-dimensional subspaces of S that contain f . Therefore,
choose Tf and Tg subspaces of S of dimension 2 and such that they are not included D0 but
they contain f and g , respectively. Counts of dimensions show that Tf ∩Tg 6= 0 so there’s an
element h ∈ Tf ∩Tg r {0}. The construction of S and D0 allow to conclude the following: The
line joining f and h and the line joining h and g are both disjoint from D0. So the claim is
proved and the Theorem follows.

1.5.3 The main result

We start by recalling the main theorem we stated before:

Theorem 1.60. Let k be a field and let X ⊆ P3
k be a smooth cubic surface. Then the lines on X

satisfy:
∑

lines l with field L

( (hyperbolic lines)TrL/k (〈1〉)

+
∑

h∈L∗/(L∗)2
(elliptic lines of type h ) ·TrL/k (〈h〉)

= 15〈1〉+12〈−1〉. (1-7)

Proof. The Euler number of the vector bundle E is well defined thanks to 1.59. Furthermore
1.18 combined with 1.51 show that the left hand side of (2-7) is identified with the Euler num-
ber e (E ) and hence it is independent of the choice of the surface. Then, the proof can be done
by computing the euler number for two particular simple surfaces.

First, let X be the cubic surface defined by f = x 3
1 + x 3

2 + x 3
3 + x 3

4 over a field k with char(k ) 6= 3
that not contains a primitive third root of unity ω3. This surface contains 3 lines with field
of definition k and 12 with field of definition L = k (ω3) given by the following: consider the
subspace

(−1,ωi
3, 0, 0)k (ω3) + (0, 0,−1,ω j

3)k (ω3)⊆ L 4 (1-8)

where i , j = 0, 1, 2. This subspace defines a morphism Spec(L) −→ G where the image is a
line contained in X . Allowing permutations on the coordinates of k 4 one gets another two
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morphism of this kind. There are 9 choices for i , j and hence we obtain 27 morphisms of the
form Spec(L )−→G . Its images are the lines we wanted. The signed count with weights equal
to the degree of the field of definition is also 27 so there are no more lines other than this 27.For
another approach of this see 1.2.
Notice that a line defined by (1-8) satisfies that Res

�

∂ f
∂ e1

�

�

S
, ∂ f
∂ e2

�

�

S

�

= 9, where e1 = (1, 0, 0, 0) and
e2 = (0, 0, 1, 0), thus according to Proposition 1.18, such a line is hyperbolic. All the other lines
can be obtained by automorphisms, thus all lines are hyperbolic and:

e (E ) = 3〈1〉+12 ·Trk (ω3)/k (〈1〉) = 3〈1〉+12 · (〈2〉+ 〈2(−3)〉)

When k contains a primitive third root of the unity one can use the same argument and now
the lines are in X considered over k , thus e (E ) = 27〈1〉.

Now, if char(k ) 6= 5 let’s consider the smooth cubic surface defined by

f =
4
∑

i , j=1,i 6= j

x 2
i x j +2

4
∑

i=1

x1 x2 x3 x−1
i .

Notice that in char(k ) 6= 3, f can be also written as f =
∑4

i , j=1,i 6= j x 2
i x j + 2

∑4
i=1 x1 x2 x3 x−1

i . In
this case, the main tool to analyze the lines on X focuses on action of the symmetric group S5

on X which is defined as follows: The action of the group S5 is defined as follows:

σ(xi ) =







−x1− x2− x3− x4 ifσ(i ) = 5

xσ(i ) otherwise

for σ ∈ S5. The polynomial f is invariant under this equation and so induces an action on X .
When the field k does not contain

p
5, there are lines on X defined by:

(1,−1, 0, 0)k + (0, 0, 1,−1)k ⊆ k 4 (1-9)

(2,α, α̂, α̂)k (
p

5) + (α, α̂, α̂, α̂)k (
p

5)⊆ k (
p

5)4 (1-10)

where α = −1+
p

5
2 and α̂ = −1−

p
5

2 . The respective fields of definition of the lines are equal to k
and k (

p
5). The type of the lines can be computed using the same techniques as in the first

case, namely, for (1-9) using the partial derivatives with respect to (1, 0, 0, 0) and (0, 0, 1, 0) one
can see that the line is hyperbolic. For (1-10) computing with respect to (0, 1, 0, 0) and (0, 0, 0, 1),
its type is −25

2 (5+
p

(5)).

The action of S5 provides orbits for the lines. For the first one, its orbit has 15 elements and
for the second one 6 elements. In addition, the type is invariant under automorphisms and
therefore:

e (E ) = 15〈1〉+6Trk (
p

5)/k

­−25

2
(5+
p

5)
·

= 15〈1〉+12〈−5〉.
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If k contains
p

5, the previous argument also holds except for the fact that the 6 lines on with
field k (

p

(5)) become 12 lines defined over k : half of them have type equal to −(5+
p

5)
2 and the

other half −(−5−
p

5)
2 . Therefore:

e (E ) = 15〈1〉+6

�

−
(5+
p

5)
2

�

+6

�

−(5−
p

5)
2

�

By reducing to the case where the field is either Fp or Q, it can be shown that all the classes
computed equal 15〈1〉+12〈−1〉 (see [9]).

As an application of the main theorem and a result in field theory [9, Lemma 58] one has the
following consequence:

Corollary 1.61. If X ⊆P3
Fq

is a smooth cubic surface. Then the number of elliptic lines on X with
field of definition Fqα forα odd plus the number of hyperbolic lines on X with field of definition
Fqβ with β even is congruent with 0 modulo 2.
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