
Corrections

Exercice 1.1.
∙ A − C : impossible car A est de taille 3 × 2 et C est de taille 2 × 3.

∙ C − 2D = (
4 −1 0

2 0 −3
) − 2(

−4 1 5

3 −7 −2
) = (

4 + 8 −1 − 2 0 − 10

2 − 6 0 + 14 −3 + 4
) = (

12 −3 −10

−4 14 1
).

∙ B×C = (
−5 2

3 −1
)(

4 −1 0

2 0 −3
) = (

−5 ⋅ 4 + 2 ⋅ 2 (−5) ⋅ (−1) + 2 ⋅ 0 −5 ⋅ 0 + 2 ⋅ (−3)

3 ⋅ 4 + (−1) ⋅ 2 3 ⋅ (−1) + (−1) ⋅ 0 3 ⋅ 0 + (−1) ⋅ (−3)
) = (

−16 5 −6

10 −3 3
).

∙ C × B : impossible car C est 2 × 3 et B est 2 × 2.

∙ B2 = (
−5 2

3 −1
) ⋅ (

−5 2

3 −1
) = (

(−5) ⋅ (−5) + 2 ⋅ 3 (−5) ⋅ 2 + 2 ⋅ (−1)

3 ⋅ (−5) + (−1) ⋅ (3) 3 ⋅ 2 + (−1) ⋅ (−1)
) = (

31 −12

−18 7
).

∙ C2 : impossible car C est 2 × 3 donc C n’est pas une matrice carrée.

Exercice 1.2.
∙ Les deux premières opérations sont impossibles car les matrices n’ont pas la même taille pour l’addition, et les
dimensions ne conviennent pas pour la multiplication.

∙ La troisième opération est possible :

(
2 6

)
⋅ (
10 −12

−6 2
) =

(
2 ⋅ 10 + 6 ⋅ (−6) 2 ⋅ (−12) + 6 ⋅ 2

)
=
(
−26 0

)

∙ La quatrième opération est impossible car on ne peut pas additionner un scalaire et une matrice.
∙ La cinquième opération est possible :

(
1 1 2

x −1 1
)
⎛

⎜

⎝

1 0

0 2

1 y

⎞

⎟

⎠

= (
1 ⋅ 1 + 1 ⋅ 0 + 2 ⋅ 1 1 ⋅ 0 + 1 ⋅ 2 + 2 ⋅ y

x ⋅ 1 + (−1) ⋅ 0 + 1 ⋅ 1 x ⋅ 0 + (−1) ⋅ 2 + 1 ⋅ y
) = (

3 2 + 2y

x + 1 −2 + y
) .

Ensuite , on peut multiplier à droite par le vecteur (z
2
) :

(
3 2 + 2y

x + 1 −2 + y
)(

z

2
) = (

3z + (2 + 2y) ⋅ 2

(x + 1)z + (−2 + y) ⋅ 2
) = (

3z + 4 + 4y

(x + 1)z − 4 + 2y
) .

Exercice 1.3.
∙ Pour le premier exercice, on calcule d’abord les produits par les scalaires :

(−i)
⎛

⎜

⎝

2 + i 1

0 3i − 5

i 4i

⎞

⎟

⎠

− (1 + 2i)
⎛

⎜

⎝

1 −i

3i 0

2 −5

⎞

⎟

⎠

=
⎛

⎜

⎝

−2i + 1 −i

0 3 + 5i

1 4

⎞

⎟

⎠

+
⎛

⎜

⎝

−(1 + 2i) i − 2

−(3i − 6) 0

−(2 + 4i) 5 + 10i

⎞

⎟

⎠

Ainsi, en additionant les deux matrices, on obtient :

⎛

⎜

⎝

−2i + 1 − 1 − 2i −i + i − 2

0 − 3i + 6 3 + 5i + 0

1 − 2 − 4i 4 + 5 + 10i

⎞

⎟

⎠

=
⎛

⎜

⎝

−4i −2

6 − 3i 3 + 5i

−1 − 4i 9 + 10i

⎞

⎟

⎠

.

∙ Pour le deuxième exercice, on e�ectue la multiplication matricielle :

(
0 5i 2 − i

7i − 4 10i 0
)
⎛

⎜

⎝

−1

i

2 + i

⎞

⎟

⎠

= (
0 ⋅ (−1) + 5i ⋅ i + (2 − i)(2 + i)

(7i − 4)(−1) + 10i ⋅ i + 0 ⋅ (2 + i)
) = (

−5 + 4 + 5

−7i + 4 − 10
) = (

4

−6 − 7i
) .
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Exercice 1.4.
Calculons d’abord A2 :

A2 =
⎛

⎜

⎝

1 1 1

1 1 1

1 1 1

⎞

⎟

⎠

⎛

⎜

⎝

1 1 1

1 1 1

1 1 1

⎞

⎟

⎠

=
⎛

⎜

⎝

3 3 3

3 3 3

3 3 3

⎞

⎟

⎠

= 3A.

Calculons ensuite A3 :
A3 = A2 ⋅ A = 3A ⋅ A = 3A2 = 3 ⋅ 3A = 32A.

Par récurrence, on montre que pour tout n ≥ 1 entier naturel, on a An = 3n−1A. Notons que pour n = 1 on a bien
A1 = 30A = A. Supposons que la formule est vraie pour un certain n ≥ 1, c’est-à-dire que An = 3n−1A. On va montrer
qu’elle est aussi vraie pour n + 1 :

An+1 = An ⋅ A = 3n−1A ⋅ A = 3n−1A2 = 3n−1 ⋅ 3A = 3nA.

On en conclut, par le principe de récurrence, que pour tout n ≥ 1 entier naturel, on a An = 3n−1A. Autrement dit,

An = 3n−1
⎛

⎜

⎝

1 1 1

1 1 1

1 1 1

⎞

⎟

⎠

=
⎛

⎜

⎝

3n−1 3n−1 3n−1

3n−1 3n−1 3n−1

3n−1 3n−1 3n−1

⎞

⎟

⎠

.

Exercice 1.5.
(1.5.1) Faux. Par exemple, si on considère les matrices

A = (
1 −1

1 −1
) et B = (

1 1

1 1
) ,

alors on a

AB = (
1 −1

1 −1
)(

1 1

1 1
) = (

0 0

0 0
) .

Mais ni A ni B ne sont des matrices nulles.

(1.5.2) Faux. Par exemple, si on considère les matrices

A = (
1 0

0 0
) , B = (

1 2

3 4
) , et C = (

1 2

6 7
) ,

alors on a

AB = (
1 0

0 0
) (

1 2

3 4
) = (

1 2

0 0
)

et

AC = (
1 0

0 0
) (

1 2

6 7
) = (

1 2

0 0
) .

On constate que AB = AC mais B ≠ C.

Exercice 1.6.
Soient A = (aij) et B = (bij) deux matrices carrées triangulaires supérieures d’ordre n. Par dé�nition, on a aij = 0 et
bij = 0 pour tout i > j. On note C = AB = (cij) le produit des deux matrices. Par dé�nition du produit matriciel, on a :

cij =

n∑

k=1

aikbkj.

Considérons le cas où i > j. Dans cette situation, pour chaque k ≤ j < i, on a aik = 0 car A est triangulaire supérieure.
De même, pour chaque k ≥ i > j, on a bkj = 0 car B est triangulaire supérieure. Ainsi, dans la somme ci-dessus, chaque
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terme est nul, ce qui implique que cij = 0 pour tout i > j. Donc, la matrice C est triangulaire supérieure. Considérons
maintenant le cas où i = j. Dans cette situation, on a :

cii =

n∑

k=1

aikbki =

i−1∑

k=1

aikbki + aiibii +

n∑

k=i+1

aikbki.

Mais pour chaque k < i, on a bki = 0 car B est triangulaire supérieure, et pour chaque k > i, on a aik = 0 car A est
triangulaire supérieure. Ainsi, les deux sommes aux extrémités sont nulles, et il reste :

cii = aiibii.

Cela montre que sur la diagonale de la matrice C, les coe�cients sont les produits des coe�cients diagonaux de A et B.

Exercice 1.7.
(1.7.1) Calculons d’abord CB :

CB =

⎛

⎜
⎜

⎝

1

1

⋮

1

⎞

⎟
⎟

⎠

(
1 1 ⋯ 1

)
=

⎛

⎜
⎜

⎝

1 1 ⋯ 1

1 1 ⋯ 1

⋮ ⋮ ⋱ ⋮

1 1 ⋯ 1

⎞

⎟
⎟

⎠

∊ ℳn(ℝ).

Maintenant, calculons BC :

BC =
(
1 1 ⋯ 1

)
⎛

⎜
⎜

⎝

1

1

⋮

1

⎞

⎟
⎟

⎠

=

n∑

i=1

1 = n.

(1.7.2) Pour n = 3, la matrice A est donnée par :

A =
⎛

⎜

⎝

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎞

⎟

⎠

=
⎛

⎜

⎝

21+1 21+2 21+3

22+1 22+2 22+3

23+1 23+2 23+3

⎞

⎟

⎠

=
⎛

⎜

⎝

4 8 16

8 16 32

16 32 64

⎞

⎟

⎠

.

Calculons maintenant BA :

BA =
(
1 1 1

) ⎛

⎜

⎝

4 8 16

8 16 32

16 32 64

⎞

⎟

⎠

=
(
4 + 8 + 16 8 + 16 + 32 16 + 32 + 64

)
=
(
28 56 112

)
.

(1.7.3) Dans le cas général, calculons BA :

BA =
(
1 1 ⋯ 1

)
⎛

⎜
⎜

⎝

21+1 21+2 ⋯ 21+n

22+1 22+2 ⋯ 22+n

⋮ ⋮ ⋱ ⋮

2n+1 2n+2 ⋯ 2n+n

⎞

⎟
⎟

⎠

=
(∑n

i=1
2i+1

∑n

i=1
2i+2 ⋯

∑n

i=1
2i+n

)
.

Calculons maintenant AC :

AC =

⎛

⎜
⎜

⎝

21+1 21+2 ⋯ 21+n

22+1 22+2 ⋯ 22+n

⋮ ⋮ ⋱ ⋮

2n+1 2n+2 ⋯ 2n+n

⎞

⎟
⎟

⎠

⎛

⎜
⎜

⎝

1

1

⋮

1

⎞

⎟
⎟

⎠

=

⎛

⎜
⎜
⎜

⎝

∑n

j=1
21+j

∑n

j=1
22+j

⋮
∑n

j=1
2n+j

⎞

⎟
⎟
⎟

⎠

.

En�n, calculons BAC :

BAC =
(
1 1 ⋯ 1

)

⎛

⎜
⎜
⎜

⎝

∑n

j=1
21+j

∑n

j=1
22+j

⋮
∑n

j=1
2n+j

⎞

⎟
⎟
⎟

⎠

=

n∑

i=1

n∑

j=1

2i+j.
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Exercice complémentaire 1. Calculer explicitement les sommes obtenues dans les expressions de BA,AC et BAC
en utilisant la formule de la somme d’une suite géométrique :

m∑

k=0

rk =
1 − rm+1

1 − r
pour r ≠ 1.

Exercice 1.8.
Calculons d’abord A × B :

A × B = (
1 −1

3 2
) (

3 −1

4 5
) = (

1 ⋅ 3 + (−1) ⋅ 4 1 ⋅ (−1) + (−1) ⋅ 5

3 ⋅ 3 + 2 ⋅ 4 3 ⋅ (−1) + 2 ⋅ 5
) = (

−1 −6

17 7
) .

Maintenant, calculons B × A :

B × A = (
3 −1

4 5
) (

1 −1

3 2
) = (

3 ⋅ 1 + (−1) ⋅ 3 3 ⋅ (−1) + (−1) ⋅ 2

4 ⋅ 1 + 5 ⋅ 3 4 ⋅ (−1) + 5 ⋅ 2
) = (

0 −5

19 6
) .

On constate que A × B ≠ B × A. En�n, calculons (A − B)2 :

A − B = (
1 − 3 −1 − (−1)

3 − 4 2 − 5
) = (

−2 0

−1 −3
) .

Donc,

(A − B)2 = (
−2 0

−1 −3
)(

−2 0

−1 −3
) = (

4 + 0 0 + 0

2 + 3 0 + 9
) = (

4 0

5 9
) .

Exercice 1.9.
(1.9.1) On peut écrire A comme la somme de la matrice −2I3 et de la matrice

N =
⎛

⎜

⎝

0 1 −1

0 0 4

0 0 0

⎞

⎟

⎠

.

En e�et, il su�t de noter que

−2I3 +N =
⎛

⎜

⎝

−2 0 0

0 −2 0

0 0 −2

⎞

⎟

⎠

+
⎛

⎜

⎝

0 1 −1

0 0 4

0 0 0

⎞

⎟

⎠

=
⎛

⎜

⎝

−2 1 −1

0 −2 4

0 0 −2

⎞

⎟

⎠

= A.

(1.9.2) Calculons les puissances successives de N :

N2 =
⎛

⎜

⎝

0 1 −1

0 0 4

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 1 −1

0 0 4

0 0 0

⎞

⎟

⎠

=
⎛

⎜

⎝

0 0 4

0 0 0

0 0 0

⎞

⎟

⎠

,

et

N3 = N2 ⋅ N =
⎛

⎜

⎝

0 0 4

0 0 0

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 1 −1

0 0 4

0 0 0

⎞

⎟

⎠

=
⎛

⎜

⎝

0 0 0

0 0 0

0 0 0

⎞

⎟

⎠

.

On constate que N3 = 0, donc N est une matrice nilpotente d’ordre 3.
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(1.9.3) On calcule −2I3N et N(−2I3) :

−2I3N =
⎛

⎜

⎝

−2 0 0

0 −2 0

0 0 −2

⎞

⎟

⎠

⎛

⎜

⎝

0 1 −1

0 0 4

0 0 0

⎞

⎟

⎠

=
⎛

⎜

⎝

0 −2 2

0 0 −8

0 0 0

⎞

⎟

⎠

,

et

N(−2I3) =
⎛

⎜

⎝

0 1 −1

0 0 4

0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

−2 0 0

0 −2 0

0 0 −2

⎞

⎟

⎠

=
⎛

⎜

⎝

0 −2 2

0 0 −8

0 0 0

⎞

⎟

⎠

.

On constate que −2I3N = N(−2I3), donc −2I3 et N commutent.

Rappel 1. Rappelons que le produit de deux matrices A et B n’est pas commutatif en géneral, c’est-à-dire que
AB n’est pas forcément égal à BA. Cependant, lorsque on a deux matrices qui commutent, on peut utiliser des
propriétés spéciales, comme le binôme de Newton pour les matrices, ce qui facilite grandement les calculs de
puissances de matrices. Ainsi, si A et B commutent, alors pour tout entier naturel n, on a :

(A + B)n =

n∑

k=0

(n

k

)
An−kBk.

(1.9.4) (a) Puisque −2I3 et N commutent, on peut utiliser le binôme de Newton pour les matrices :

An = (−2I3 +N)n =

n∑

k=0

(n

k

)
(−2I3)

n−kNk.

Or, comme N3 = 0, les termes avec k ≥ 3 sont nuls. Ainsi, on a :

An = (−2I3)
n +

(n

1

)
(−2I3)

n−1N +
(n

2

)
(−2I3)

n−2N2

= (−2)nI3 +
n!

1!(n − 1)!
(−2)n−1N +

n!

2!(n − 2)!
(−2)n−2N2.

On peut donc écrire An sous la forme An = anI3 + bnN + cnN
2 avec :

an = (−2)n, bn = n(−2)n−1, cn =
n(n − 1)

2
(−2)n−2.

(b) En substituant les valeurs de an, bn, et cn, on obtient :

An = (−2)nI3 + n(−2)n−1N +
n(n − 1)

2
(−2)n−2N2.

(c) Pour n pair, (−2)n est positif, tandis que pour n impair, (−2)n est négatif. Les autres termes suivent le même
schéma en fonction de la parité de n. Ainsi, on peut observer que la structure de An change en fonction de
la parité de n, mais la forme générale reste la même.

Exercice 1.10.
La transposée d’une matrice s’obtient en échangeant ses lignes et ses colonnes. Ainsi, on a :

D⊤ =
⎛

⎜

⎝

1 0 0

0 2 0

0 0 3

⎞

⎟

⎠

, T⊤ =
⎛

⎜

⎝

−1 0 0

2 1 0

1 −2 3

⎞

⎟

⎠

, A⊤ =
⎛

⎜

⎝

1 3

−2 1

0 −1

⎞

⎟

⎠

, et B⊤ =
(
1 0 −10 5

)
.

Exercice 1.11.
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(1.11.1) Par dé�nition de la trace, on a :

Tr(A + B) =

n∑

i=1

(aii + bii) =

n∑

i=1

aii +

n∑

i=1

bii = Tr(A) + Tr(B).

(1.11.2) On a :

Tr(�A) =

n∑

i=1

�aii = �

n∑

i=1

aii = � Tr(A).

(1.11.3) Pour montrer que Tr(AB) = Tr(BA), on calcule d’abord Tr(AB) :

Tr(AB) =

n∑

i=1

(AB)ii =

n∑

i=1

n∑

k=1

aikbki.

Maintenant, calculons Tr(BA) :

Tr(BA) =

n∑

i=1

(BA)ii =

n∑

i=1

n∑

k=1

bikaki.

On remarque que dans les deux expressions, on somme les mêmes termes aikbki et bikaki pour tous les indices
i et k. Ainsi, on conclut que :

Tr(AB) = Tr(BA).

Exercice 1.12.
Supposons par l’absurde que AB − BA = In. En prenant la trace des deux côtés de cette égalité, on obtient :

Tr(AB − BA) = Tr(In).

Or, par linéarité de la trace, on a :
Tr(AB − BA) = Tr(AB) − Tr(BA).

En utilisant la propriété Tr(AB) = Tr(BA) démontrée précédemment, on obtient :

Tr(AB − BA) = 0.

D’un autre côté, la trace de l’identité In est égale à n, car elle est la somme des n coe�cients diagonaux égaux à 1. Ainsi,
on a :

Tr(In) = n.

Cela conduit à une contradiction, car on a trouvé que Tr(AB − BA) = 0 et Tr(In) = n, ce qui implique que 0 = n.
Comme n est un entier strictement positif, cette égalité est impossible. Par conséquent, notre supposition initiale est
fausse, et on conclut que AB − BA ≠ In.
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