Real cycle map (2022)

References

  1. [ABR] “Constructible sets in real geometry”, C. Andradas, L. Bröcker, J. Ruiz

  2. [B] “Witt groups”, P. Balmer

  3. [BCR] “Real algebraic geometry”, J. Bochnak, M. Coste, M-F. Roy

  4. [EKM] “The algebraic and geometry theory of quadratic forms”, R. Elman, N. Karpenko, A. Merkurjev

  5. [F] “Intersection theory”, W. Fulton

  6. [Fa] “Groupes de Chow-Witt”, J. Fasel

  7. [GM] “Methods of homological algebra”, S. Gelfand, Y. Manin

  8. [H] “Algebraic geometry”, R. Hartshorne

  9. [HWXZ] “The real cycle class map”, J. Hornbostel, M. Wendt, H. Xie, M. Zibrowius

  10. [I] “Cohomology of sheaves”, B. Iversen

  11. [J1] “On the Witt groups of schemes” (thesis), J. Jacobson

  12. [J2] “Real cohomology and the powers of the fundamental ideal in the Witt ring”, J. Jacobson

  13. [K] “Symmetric bilinear forms over algebraic varieties”, M. Knebusch

  14. [Ka] “Formes quadratiques sur un corps”, B. Kahn

  15. [L1] Un des documents rédigés par Samuel pour un autre gdt : https://deglise.perso.math.cnrs.fr/gdt/Real/Lerbet_pdf1.pdf

  16. [L2] Un des documents rédigés par Samuel pour un autre gdt : https://deglise.perso.math.cnrs.fr/gdt/Real/Lerbet_pdf2.pdf

  17. [R] “Introduction to homological algebra”, J. Rotman

  18. [S] “Real and étale cohomology”, C. Scheiderer

  19. [Sc] ‘“Quadratic and hermitian forms”, W. Scharlau

LecturesSpeakerNotes
Abelian ctargories IFabien 
Abelian categories IIFabien 
Sheaf cohomoloogy ISantiago)
Sehaf cohomology IISantiago[)
 Achim)
 Achim 
Grothendieck toposJohannes 
Geometric pointsJohannes-